
Application of Genetic Algorithm for 
Microwave Imaging of a Partially Immersed 

Imperfectly Conducting Cylinder 
 

Yi Sun1�, Xiaodong 
Zhang2 

1, 2 School of Electrical 
Engineering 

 Beijing Jiaotong University 
Beijing, China 

W. Chien3 
3 Electronic Engineering 

Department 
 De Lin Institute of 

Technology 
Tu-Cheng, Taipei 

C. H. Sun4, C. C. Chiu5 
4, 5 Electrical Engineering 

Department  
Tamkang University  

Tamsui, Taiwan 

 
 

Abstract—This paper presents a computational approach 
to the imaging of a partially immersed imperfectly 
conducting cylinder. The shape and conductivity of an 
imperfectly conducting cylinder and scatters is unknown, 
the transverse magnetic (TM) wave illuminated while the 
scattered field is recorded outside in free space. Based on 
the boundary condition and the measured scattered field, 
a set of nonlinear integral equations is derived and the 
imaging problem is reformulated into an optimization 
problem We use genetic algorithm (GA) to reconstruct the 
shape and the conductivity of a partially immersed 
imperfectly conducting cylinder. 

Keywords- Inverse Problem, Partially Immersed, 
Steady-State Genetic Algorithm. 

I. INTRODUCTION  
In inverse scattering, one attempts to infer the 

profile of an object from the measurement data 
collected away from the scatterer. Needless to say, this 
is very important for a number of sensing and remote 
sensing applications [1]-[4]. However in inverse 
problem, main difficulties are highly ill-posed and 
nonlinearity. In the past few years, several numerical 
techniques have been reported for electromagnetic 
imaging reconstruction. To the best of our knowledge, 
there are no investigations on the electromagnetic 
imaging of partially immersed imperfectly conducting 
cylinder. In this paper, the electromagnetic imaging of a 
partially immersed imperfectly conducting cylinder is 
first reported using GA. In section II, the relevant theory 
and formulation are presented. The numerical results for 
reconstructing objects of different shapes are shown in 
section III. Finally, some conclusions are drawn in 
section IV.   

II. THEORETICAL FORMULATION 
Let us consider an imperfectly conducting cylinder 

which is partially immersed in a lossy homogeneous 
half-space, as shown in Figure1. Media in regions 1 and 
2 are characterized by permittivities and conductivities 

(ε1, σ1) and (ε2, σ2) respectively. An imperfectly 
conducting cylinder is illuminated by a transverse 
magnetic I plane wave. The cylinder is of an infinite 
extent in the z direction, and its cross-section is 
described in polar coordinates in the x, y plane by the 
equation �=F(�), i.e., the object is of a star-like shape. 
We assume that time dependence of the field is 
harmonic with the factor exp (j�t). Let Einc denote the 
incident field from region 1 with incident angle �1. 
Owing to the interface between regions 1 and 2, the 
incident plane wave generates two waves that would 
exist in the absence of the conducting object. Thus, the 
unperturbed field is given by  
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Figure1 Imperfectly Conducting Cylinder ___________________________________ 
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Since the cylinder is partially immersed, the 
equivalent current exists both in the upper half space 
and the lower half space. As a result, the details of 
Green’s function are given first as follows: 

When the equivalent current exists in the upper half 
space, the Green’s function for the line source in the 
region 1, can be expressed as 
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When the equivalent current exists in the lower half 
space, the Green’s function for the line source in the 
region 2, is 
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The scatterer of interest here is a nonmagnetic 
(μ=μ0), imperfectly conductivity with minimum radius 
of curvature α. The surface impedance is expressed as 

σωμω /)( 0jZ s ≅ . 

This approximation is valid as long as  

Im(Nc)ka >>1 and σ>>ωε0  

where “Im” means taking the imaginary part, and Nc 
is the complex index of refraction of the conductor, 
given by 

 0
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Then, the shape function F(θ) can be expanded as: 

∑ ∑
= =

+=
2/

0

2/

1

)sin()cos()(
N

n

N

n
nn nCnBF θθθ

     (5) 

where Bn and Cn are real numbers to be determined, 
and N+1 is the number of unknowns for the shape 
function. 

III. NUMERICAL RESULTS 
Let us consider an imperfectly conducting cylinder 

which is partially immersed in a lossless half-space 
(σ1=σ2=0) and the parameter a is set to zero. The 
permittivity in region 1 and region 2 is characterized by 
ε1=ε0 and ε2=2.56ε0, respectively. The frequency of the 
incident wave are chosen to be 1GHz, with incident 
angles Φ1 equal to 45º and 315º, respectively. For each 
incident wave 8 measurements are made at the points 
equally separated on a semi-circle with the radius of 3m 
in region 1. The population size of 100 is chosen and 
rank selection scheme is used with the top 30 
individuals being reproduced accords to the rank. In the 
following cases the searching range for the unknown 
coefficients is chosen from 0 to 0.2. The extreme values 
of the coefficient of the shape function can be 
determined by the prior knowledge of the objects. The 
crossover rate is set to 0.1 such that only 10 iterations 
are performed per generation. The mutation probability 
is set to 0.05. 

Here, the shape function discrepancy is defined as 

2/122
'

1
)}(/)]()([

'
1{ iii

N

i

cal FFF
N

DR θθθ −= ∑
= (6) 

where N′ is set to 360.  

The conductivity discrepancy is defined as 
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In this example, the shape function is chosen to be 
F(θ)=(0.028+0.008cos3θ) m. The chosen conductivity is 



100 S/m. The reconstructed shape function for the best 
population member is plotted in Figure2 with the shape 
and the conductivity error shown in Figure3. The 
reconstructed shape error is <5%. 

IV. CONCLUSION 
In this paper, we present a method of applying 

genetic algorithm to reconstruct the shape and the 
conductivity of an imperfectly conducting cylinder by 
TM waves. Base on the imperfect conducting cylinder 
approximate boundary by assuming that the total 
tangential electric field on the scatterer surface is related 
to the surface current density through the surface 
impedance and the measured scattered fields, we have 
derived a set of nonlinear integral equations and 
reformulated the imaging problem into an optimization 
one. By using the genetic algorithm, the shape and 
conductivity of the object can be reconstructed, even 
when the initial guess is far from exact one. Numerical 
results show that good reconstruction for the shape and 
conductivity of the object can be obtained from the 
scattered fields. 

 
Figure2 Shape function for example 

 
Figure3 The shape and conductivity function errors versus 

generation 
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