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Abstract— Dynamic differential evolution (DDE) for shape reconstruction of perfect conduct-
ing cylinder (PEC) buried in a half-space is presented. Assume that a conducting cylinder of
unknown shape is buried in one half-space and scatters the field incident from another half-
space where the scattered filed is measured. Based on the boundary condition and the measured
scattered field, a set of nonlinear integral equations is derived and the imaging problem is re-
formulated into an optimization problem. The inverse problem is resolved by an optimization
approach, and the global searching scheme DDE is then employed to search the parameter space.
Numerical results demonstrate that even when the initial guess is far away from the exact one,
good reconstruction can be obtained by using DDE.

1. INTRODUCTION

The object of inverse electromagnetic scattering is to reconstruct the profile of unknown objects us-
ing measurement data. The inverse scattering problem has many applications in diverse fields such
as nondestructive testing, medical imaging, geophysics, remote sensing, and ground penetrating
radar [1–4].

As known, the inverse scattering problem is generally nonlinear and ill-posedness [5]. One way
for solving the nonlinear inverse problem is solving the forward scattering problem iteratively to
minimize an error function known as the cost function. This function represents the error between
the measured scattered fields and the simulated fields during the updates of the evolving objects in
each inversion. Recently, several papers for inverse scattering problems have been published on the
subject of 2-D object about deal with shape reconstruction problems by using genetic algorithms
(GAs) [6–10], differential evolution (DE) [11–13], particle swarm optimization (PSO) [14–18] and
Neural network [19].

In the 2010, the dynamic differential evolution (DDE) was first proposed to deal with the
shape reconstruction of homogenous dielectric objects [11]. DDE algorithm is potentially able to
obtain the global optimum of a functional whatever the initial guesses are. It is also found that
DDE algorithms have good convergences compared with PSO methods in the inverse scattering
problems [20]. To the best of our knowledge, there is still no investigation on using the DDE to
reconstruct the electromagnetic imaging of buried perfect conducting cylinders.

In this paper, the goal of the current work is to reconstruct 2-D buried PEC target with arbitrary
cross sections, and dynamic differential evolution (DDE) is employed to recover the shape of a buried
perfectly conducting cylinder. In Section 2, a theoretical formulation for the inverse scattering is
presented. The general principles of DDE, we applied them to the inverse problem are described
in Section 3. Numerical results for reconstructing objects of different shapes with noise are given
in Section 4. Finally, some conclusions are drawn in Section 5.

2. THEORETICAL FORMULATION

Let us consider a perfectly conducting cylinder which is buried in a lossy homogeneous half-space,
as shown in Figure 1. Media in regions 1 and 2 are characterized by permittivity and conductivity
(ε1, σ1) and (ε2, σ2) , respectively and the permeability in both regions are µ0 , i.e., non magnetic
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Figure 1: Geometry of the problem in (x, y) plane.

media are concerned here. The cross section of the cylinder are described in polar coordinates in xy
plane by the equation ρ = F (θ). The cylinder is illuminated by a plane wave with time dependence
ejωt.

For simplicity, the electric field vector is assumed to be parallel to the z-axis (i.e., transverse
magnetic or TM polarization). Let Einc denote the incident field from region 1 with incident angle
φ1. Owing to the interface between region 1 and region 2, the incident plane wave generates two
waves which would exist in the absence of the conducting object: a reflected wave (for y ≤ −a)
and a transmitted wave (for y > −a). Thus unperturbed field is given by

~Ei(~r) = Ei(x, y)ẑ (1)

For a TM incident wave, the scattered field can be expressed as

Es(x, y) = −
∫ 2π

0
G(x, y;F (θ′), θ′)J(θ′)dθ′ (2)

with

J(θ) = −jωµ0

√
F 2(θ) + F ′2(θ)Js(θ)

G(x, y;x′, y′) =
{

G1(x, y;x′, y′), y ≤ −a
G2(x, y;x′, y′) = Gf (x, y;x′, y′) + Gs(x, y;x′, y′), y > −a

(3)

where

G1(x, y;x′, y′) =
1
2π

∫ ∞

−∞

j

γ1 + γ2
ejγ1(y+a)e−jγ2(y′+a)e−jα(x−x′)dα (3a)

Gf (x, y;x′, y′) =
j

4
H

(2)
0

[
k2

√
(x− x′)2 + (y − y′)2

]
(3b)

Gs(x, y;x′, y′) =
1
2π

∫ ∞

−∞

j

2γ2

(
γ2 − γ1

γ2 + γ1

)
e−jγ2(y+2a+y)e−jα(x−x′)dα (3c)

γ2
i = k2

i − α2, i = 1, 2, Im(γi) ≤ 0, y′ > a

Here Js(θ) is the induced surface current density which is proportional to the normal derivative of
electric field on the conductor surface. G(x, y;x′, y′) is the Green’s function which can be obtained
by Fourier transform. In (3b), H

(2)
0 is the Hankel function of the second kind of order zero.

Let us consider the following inverse problem: giving the scattered electric field Es measured
outside the scatterer determine the shape F (θ) of the object. Assume the approximate center of the
scatterer, which in fact can be any point inside the scatterer, is known. Then the shape function
F (θ) can be expanded as:

F (θ) ∼=
N

2∑

n=0

Bn cos(nθ)+

N

2∑

n=1

Cn sin(nθ) (4)

where Bn and Cn are real coefficients to be determined, and N + 1 is the number of unknowns.
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For the inverse scattering problem, the shape of the PEC is reconstructed by the given scattered
electric field measured at the receivers. This problem is resolved by an optimization approach, for
which the global searching scheme DDE is employed to minimize the following objective function
(OF ):

OF =

{
1

Mt

Mt∑

m=1

∣∣∣Eexp
s (r̄m)− Ecal

s (r̄m)
∣∣∣
2
/ |Eexp

s (r̄m)|2
}1/2

(5)

where M is the total number of measured points. Eexp
s (⇀

rm) and Ecal
s (⇀

rm) are the measured
scattered field and the calculated scattered field respectively. Therefore, the maximization of OF
can be interpreted as the minimization of the least-squares error between the measured and the
calculated fields. It should be noted that the shape function used to describe the shape of the
cylinder will be determined by the DDE scheme.

3. DYNAMIC DIFFERENTIAL EVOLUTION (DDE)

DDE algorithm starts with an initial population of potential solutions that is composed by a group
of randomly generated individuals which represents shape function of the cylinders. Each individual
in DDE algorithm is aD-dimensional vector consisting of D optimization parameters. The initial
population may be expressed by {xi : i = 1, 2, · · · , Np}, where Np is the population size. After
initialization, DDE algorithm performs the genetic evolution until the termination criterion is met.
DDE algorithm, like other EAs, also relies on the genetic operations (mutation, crossover and
selection) to evolve generation by generation.

The key distinction between a DDE algorithm and a typical DE [21] is on the population
updating mechanism. In a typical DE, all the update actions of the population are performed at
the end of the generation, of which the implementation is referred as static updating mechanism.
Alternatively, the updating mechanism of a DDE algorithm is carried out in a dynamic way:
each parent individual will be replaced by his offspring if the offspring has a better objective
function value than its parent individual does. Thus, DDE algorithm can respond the progress of
population status immediately and to yield faster convergence speed than the typical DE. Based
on the convergent characteristic of DDE algorithm, we are able to reduce the numbers of objective
function evaluation and reconstruct the microwave image efficiently.

4. NUMERICAL RESULTS

Let us consider a perfectly conducting cylinder which is buried in a lossless half-space (σ1 = σ2 = 0).
the permittivity in region 1 and region 2 is characterized by ε1 = ε0 and ε2 = 2.7ε0, respectively. A
TM polarization plane wave of unit amplitude is incident from region 1 upon the object as shown
in Fig. 1. The frequency of the incident wave is chosen to be 3 GHz, i.e., the wavelength λ0 is 0.1 m.
The object is buried at a depth a = λ0 and the scattered field is measured on a probing line along
the interface between region 1 and region 2. Our purpose is to reconstruct the shape of the object
by using the scattered field at different incident angles. To reconstruct the shape of the object,
the object is illuminated by incident waves from three different directions and 8 measurement
points at equal spacing are used along the interface y = −a for each incident angle. There are 24
measurement points in each simulation. To save computing time, the number of unknowns is set to
be 7. The parameters and the corresponding searching ranges are listed follows: The operational
coefficients are set as below: The crossover rate CR is set to be 0.8. Both parameters F and λ are
set to be 0.8. The population size Np is set to be 110. The search range for the unknown coefficient
of the shape function is chosen to be from 0 to 0.1. The extreme value of the coefficient of the
shape function can be determined by the prior knowledge of the objects. Here DR, which is called
shape function discrepancies, is defined as

DR =

{
1

N ′

N ′∑

i=1

[F cal(θi)− F (θi)]2/F 2(θi)

}1/2

(6)

In the example, the shape function is chosen to be F (θ) = 0.03 + 0.01 cos(2θ) m. The recon-
structed images for different generations and the relative error of the example are shown in Figure 2
and Figure 3, respectively. Figure 3 shows that the relative errors of the shape decrease quickly
and good convergences are achieved within 50 generation. The DR value is about 0.5% in the final
generation.
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Figure 2: The reconstructed shape of the cylinder
at different generations for the example.
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Figure 3: Shape function error versus generation for
the example.

5. CONCLUSION

We have presented a study of applying the DDE to reconstruct the shape of a buried conducting
cylinder. These approaches are applied to two-dimensional configurations. After an integral for-
mulation, a discretization using the method of moment (MoM) is applied. Considering that the
microwave imaging is recast as a nonlinear optimization problem, objective function is defined by
the norm of a difference between the measured scattered electric field and the calculated scattered
field for an estimated the shape of metallic cylinder. Thus, the shape of metallic cylinder can be
obtained by minimizing the objective function.
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