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Abstract 
This paper proposes a “recursive-balanced-2-way split” 
method, which is an optimal method for large integer 
multiplication on mobile devices and smart low-end 
devices when implementing modern cryptographic 
applications. The proposed method is based on the 
divide-and-conquer concept. The proposed method first 
recursively bisections multiplier and multiplicand in 
threshold times. Subsequently, classical multiplication 
calculates the products of the split multiplier and 
multiplicand blocks. Finally, the products of the blocks 
are gradually integrated to obtain the product of the large 
integers. This study demonstrated that the n-times 
recursive-balanced-2-way split method, where n is the 
floor of log2(0.13515×s), obtains the optimal performance 
in multiplying two s-words based on classical 
multiplication. This method can be implemented by 
recursive call procedures, and reduces code size and 
computational cost substantially. The proposed scheme is 
an energy-saving method to implement security protocols 
in mobile devices and low-end devices. Therefore, it is 
suitable for realizing modern public-key cryptosystems 
on low-end devices, in which the framework is based on 
modular exponentiation and modular multiplication. The 
experiment results show that modular exponentiation 
combined with other modular multiplication methods 
uses 1.28x-2.10x the computational cost required in the 
proposed method for the bit length of the modulus from 
1024 bits to 4096 bits on Texas Instruments 
TMS320C55x DSP. Low-end devices based on the 
proposed method perform security protocols and PKI 
functions practically and satisfy the security 
recommendations of NIST. 
 
Keywords: Classical multiplication, Divide-and-conquer, 
Karatsuba-Ofman method, Public-key cryptosystem. 
 
1 Introduction 

 
Current mobile communication technology has 

changed our lives with a wide variety of smart low-end 
devices. The kernel of a smart low-end device is usually 
one or more than one RISC-like processor. These 
RISC-like processors, featuring single-precision 
multiplication, addition, store, and load instructions as 
their word-based architectures, have special features, 
such as low computation and low storage, and must be 
carefully considered when developing particular 
applications. A number of special applications, especially 
modern cryptography, require an operation of integers 
longer than 100 decimal digits. For example, because of 

the progress in integer factorization and computer power 
[1], the National Institute of Standards and Technology 
(NIST) in the United States changed their recommended 
key sizes for users or devices from 1024-bit to 2048-bit 
for the RSA digital signature or key transportation and 
Diffie-Hellman key agreement [2][3]. Such integers are 
too long to fit into a single word of the modern 
microprocessor. In addition, large computation is 
required to realize modern cryptography; therefore, more 
storage space is required. A particular approach must be 
determined to achieve reasonable performances on such 
an application. 

 
Some applications, such as pervasive computing [4] 

and mobile multimedia [6], need some cryptographic 
procedures to keep secrets. Numerous security protocols 
[6][7], , PKI functions (Public Key Infrastructure), and 
cryptographic methods are based on modular 
exponentiation computation, including RSA 
cryptosystem [8], elliptic curve cryptography [9], DSA 
[10], and Diffie-Hellman Key Exchange [11]. The 
modular exponentiation procedure requires several 
modular multiplications. The kernel operation is a large 
integer multiplication for modular exponentiation or 
modular multiplication. The proportion of instructions 
spent on a large integer multiplication is 86% for 
RSA-1024, 63% for ECC-160, and 90% for ECC-163 
[12][13]. Consequently, this study focused on 
accelerating large integer multiplication operations. 

 
Two methods are suitable for implementing large 

integer multiplications on modern microprocessors. One 
method is classical multiplication, which is easy to 
implement, but exhibits inferior performance when the 
size of the operand becomes increasingly larger. The 
other method is the Karatsuba-Ofman method [14], which 
splits the operand into two equally small blocks and 
constructs them with classical multiplication. When the 
operand is sufficiently large, the Karatsuba-Ofman 
method exhibits superior performance in comparison to 
direct classical multiplication. However, the performance 
of large integer multiplication can only improve to a 
limited extent because the Karatsuba-Ofman method only 
splits the operand once. 

 
This study researched a number of basic methods to 

split the operand according to the divide-and-conquer 
concept, synthesized them into various methods, and 
analyzed their performances before deciding on the 
optimal method for large integer multiplications. 
Moreover, this study also determined the threshold time 



to split the operands. Based on these two crucial decisions, 
large integer multiplication achieved optimal 
performance on microprocessors. The energy 
consumption of software is closely related to execution 
time [15]. The proposed method enables low-end and 
mobile devices to consume less energy to perform 
security protocols. 

 
Section 2 presents reviews and analysis of some 

related works. The proposed method is described in 
Section 3, followed by the analysis and demonstration of 
the proposed method in Section 4, and simulations and 
experiments in Section 5. Finally, Section 6 offers 
conclusions. 

 
2 Analyses of Related Works 

 
This section introduces two multiplication 

algorithms. Subsections 2.1 and 2.2 introduce and analyze 
the classical multiplication and the Karatsuba-Ofman 
method, respectively. 

 
2.1. Classical Multiplication 

 
Classical multiplication is also called the 

“Pencil-and-Paper” method. This method is 
multiplication on operand scanning. The idea of this 
Pencil-and-Paper method is shown in Algorithm 1 [16]. 

 
Classical multiplication is easy to implement because 

no extra carry bit is present. Therefore, classical 
multiplication is easy to implement in high-level 
programming languages that provide a double-precision 
integer data type. For example, common extensions of the 
C and C++ programming languages support the unsigned 
data type for 64-bit integers. Java language provides the 
long type, which has a precision of 64 bits on all platforms 
[13].The word complexity of classical multiplication is 
O(s2) [17], where s is the word length of the operand. 

Table 1 [18] shows the number of base instructions for 
classical multiplication, for which each base instruction 
requires the same CPU cycle in RISC CPUs such as ARM. 
Classical multiplication exhibits excellent performance 
when the operand length is short. However, the 
performance of classical multiplication degenerates 
rapidly with the increase of operand length. 

 
2.2. Karatsuba-Ofman Method 

 
Karatsuba and Ofman proposed the 

Karatsuba-Ofman method [14]. This method reduces the 
multiplication of two s-word operands to three 
multiplications of size (s/2), but only at the cost of an 
increased number of large integer additions or 
subtractions. Each of these three (s/2)-word 
multiplications can be used with classical multiplication. 
According to the Karatsuba-Ofman method, the product P 
= A × B = [Ah || Al]×[Bh || Bl] can be expressed as the 
following two equations, where the bit length of one word 
is w: 
P = A × B 
= AhBh2sw + (AhBl + AlBh)2sw/2 + AlBl20 (1) 
= AhBh 2sw + [(Ah + Al)( Bh + B0) – AhBh –AlBl ]2sw/2  
+ AlBl20  (2) 
When the two equations are compared, Equation (2) has 
one less (s/2)-word multiplication, two more (s/2)-word 
additions, one more s-word addition/subtraction, and 

Algorithm 1. Classical multiplication (Pencil-and-Paper 
method) 
Input: Integers A = (as-1as-2…a1a0)w, B = (bs-1bs-2…b1b0)w. 
Output: The product P = A×B = (p2s-1p2s-2…p1p0)w in radix 
w representation. 
1. P ← 0  
2. for i from 0 to s −1 do 
3.   u←0 
4.   for j from 0 to s −1 do 
5.     (u,v) ← aj × bi + pi+j + u 
6.     pi+j ← v 
7.   end for 
8.   ps+i ← u 
9. end for 
 

Table 1. The number of base instructions for two s-words classical 
multiplication [14] 

Algorithm # Mul # Add # Load # Store #Total 
Classical 

Multiplication s2 4s2 2s2 + s s2 + s 8s2 + 2s 

 

Algorithm 2. Large integer addition [12] 
Input: Integers A = (as-1as-2…a1a0)w, B = (bs-1bs-2…b1b0)w. 
Output: (ε, C) where C = A + B mod 2sw = (cs-1cs-2…c1c0)w 
in radix w representation, ε is the carry bit, and 1 word has 
w bits. 
1. (ε, c0) ← a0 + b0 
2. for i from 0 to s −1 do 
3.   (ε, ci) ← ai + bi + ε 
4. end for 
5. return (ε, C) 

 
Table 2. The number of base instructions for a large integer 

addition/subtraction 
Algorithm # Add/Sub # Load # Store #Total 

Multipresion 
Addition/Subtraction 2s 2s s 5s 

 
Table 3. the number of classical mul., large integer add./sub. for the 

Karatsuba-Ofman method 

Algorithm 

Classical 
multiplication Addition/Subtraction 

Length 
(word) # Length 

(word) # 

Karatsuba-Ofman method s/2 3 
s 3 

s/2 2 

 
Table 4. The number of base instructions for the Karatsuba-Ofman method 

Algorithm # Mul # 
Add/Sub # Load # Store #Total 

Karatsuba-Ofman 
method (3/4)s2 3s2 + 8s 

(3/2)s2 
+ 

(19/2)s 

(3/4)s2 + 
(11/2)s 6s2 + 23s 

      
 



more memory accesses because it contains more elements. 
For the large value of s, the cost of the additions, 
subtractions, and memory accesses are insignificant 
relative to the cost of the multiplications. 

 
The word complexity of the Karatsuba-Ofman 

method is O(slog23) [17], which exhibits superior 
performance to classical multiplication. To discover the 
computational cost of the Karatsuba-Ofman method, this 
study estimated the number of base instructions for a 
large integer addition. This study assumed that addition 
and subtraction operations consume the same 
computational cost. Algorithm 2 is a large integer 
addition. Table 2 shows the number of base instructions in 
Algorithm 2. Table 3 shows the number of classical 
multiplications and additions/subtractions for the 
Karatsuba-Ofman method. Finally, Table 4 combines 
Table 1, Table 2, and Table 3 to demonstrate the number 
of base instructions for the Karatsuba-Ofman method.  A 
comparison of Tables 1 and 4 reveals that the 
Karatsuba-Ofman method is more efficient than classical 
multiplication for large integer multiplication. 

 
3 The Proposed Method 

 
To clearly describe the proposed method, this study 

defines the following notations: 
 |A|: denotes the word length of integer A. 
 There are w bits in one word. 
 Ahigh, Alow: denote (A/2(sw/2)) and (A mod 2(sw/2)), 

respectively, where |A| = s. 
 
Modern microprocessors and digital signal 

processors have internal data pathways and internal 
registers with a fixed number of bits. A 32-bit processor 
will process 32-bit words, a 64-bit processor will process 
64-bit words. The internal registers are sized to 
accommodate the word length with a single transfer. 
Generally, the more bits a processor can handle, the faster 

it can run. The instructions of microprocessors and digital 
signal processors are entered or stored in a storage device. 
Therefore, all word-sized transfers must have the 
operands in memory residing on word-boundaries. 
Operations on word boundary are more efficient than 
those on bit level, because processors possess word-based 
architectures. This section proposes an optimal method 
for modern microprocessors and digital signal processors 
based on the divide-and-conquer concept to accelerate the 
speed of large integer multiplication. The proposed 
method recursively bisections multiplier and multiplicand 
n (= log2(0.13515×s)) times. Subsequently, classical 
multiplication evaluates the products of the split 
multiplier and multiplicand blocks. Finally, the products 
of the blocks are gradually integrated to obtain the 
product of the large numbers. Algorithm 3 details the 
proposed method, named “recursive-balanced-2-way 
split”. Subsection 4.2 demonstrates that the proposed n(= 
log2(0.13515×s))-times recursive-balanced-2-way split 
method achieves optimal performance. 

 
4 Analysis of the Proposed Method 

 
This section demonstrates that the performance of the 

proposed method, recursive-balanced-2-way split, is 
optimal for large integer multiplications on 
microprocessors and digital signal processors, which 
perform each word operation in one cycle, such as 
RISC-like processors. Subsection 4.1 presents the 
definition and evaluation of two basic methods for 
splitting the operand: balanced-t-way split and 
unbalanced-t-way split. Subsection 4.2 demonstrates that 
the n(=log2(0.13515×s))-times recursive-balanced- 
2-way split method achieves optimal performance in 
multiplying two s-words based on classical multiplication. 
Without loss of generality, this study paper assumed that 
both multiplier and multiplicand are s-word large integers, 
and each word is w bits. 

 
4.1. Two Basic Methods 

 
Two basic methods are used to split the operand, that 

is, balanced-t-way split and unbalanced-t-way split. 
Synthesizing these two methods can generate any model 
for splitting operands for multiplication. 

 
4.1.1. Balanced-t-way Split 

 

Figure 1 shows the framework of splitting an s-word 
integer into t equal parts. The balanced-t-way split 
performs Equation (3) to evaluate the product of large 

s-word integer

s/ts/t s/t s/t⋅⋅⋅⋅⋅⋅⋅

Fig. 1. Balanced-t-way split 

Algorithm 3. The recursive-balanced-2-way split 
Function: Mult(n, A, B)  
// Input: Integers A = (as-1as-2…a1a0)w, B = 
(bs-1bs-2…b1b0)w in radix w representation, A = Ahigh2sw/2 + 
Alow, B = Bhigh2sw/2 + Blow where |A| = |B| = s, one word has 
w bits, predetermined n = log2(0.13515×s). 
// Output: The 2s-word result of the product of A and B. 
If n > 0, then  
// recursively bisection operands. 
Height_part= Mult((n – 1), Ahigh, Bhigh); 
Low_part= Mult((n – 1), Alow, Blow); 
Return (Height_part×2sw + [Mult((n – 1), (Ahigh + Alow), 

(Bhigh + Blow)) – Height_part – Low_part] × 2sw/2 + 
Low_part)  

else  
// perform the classical multiplication to multiply A and 
B. 
 Return (A × B). 
Endif. 
 



integers A and B from the split blocks. The multiplication, 
such as AiBj, is classical multiplication with (s/t)-words. 
 
P = A × B 

= 
1 1

0 0
2 2

sw swt ti j
t t

i j
i j

A B
− −× ×

= =

  
×  

   
∑ ∑  

= At – 1Bt – 12(2t – 2)(sw/t) + (At – 1Bt – 2 + At – 2Bt – 1)2(2t – 3)(sw/t) 
++ (At – 1B1 + At – 2B2 ++ A1Bt – 1)2(t)(sw/t) + (At – 1B0 + 
At – 2B1 ++ A0Bt – 1)2(t – 1)(sw/t)+(At – 2B0 + At – 3B1 ++ 
A0Bt – 2) 2(t – 2)(sw/t) ++ A0B020                              (3) 
According to the Karatsuba-Ofman method, each cross 
term in Equation (3) can be rewritten as the following 
non-cross term: 
AiBj + AjB i= (Ai + Aj)(Bi + Bj) − AiBi − AjBj, where i ≠ j. 

 
After transforming each possible cross term, 

Theorem 1 demonstrates the number of base instructions 
using balanced-t-way split to compute the large integer 
multiplication of two s-word integers. Due to the 
limitations of the number of pages, the paper omitted the 
proofs of the following theorems. Readers interested in 
understanding the proofs, please contact the authors. 

  
Theorem 1. Using balanced-t-way split to multiply two 
s-word integers, the number of base instructions is 
4 4t

t
+ s2 + (21t − 19)s, where t ≥ 2. 

 
4.1.2. Unbalanced-t-way Split 

 

In the unbalanced-t-way split method, the s-word 
integer is split into t unequal smaller parts, such as the 
example shown in Figure 2. Theorem 2 demonstrates the 
number of base instructions in unbalanced-t-way split. 

 
Theorem 2. The sequence {d1, ,dt – 1}satisfies the 
following conditions: 
(1) at least one di > 0 
(2) d1 + d2 ++ dt – 1 > 0 
(3) If di > 0, then dj ≥ dj – 1 for j = i, i – 1, , 2 
(4) If di < 0, then dj ≥ dj + 1 for j = i, i + 1, , t – 2.  

Then number of base instructions is 4 4t
t
+ s2 + {(21t – 19) 

+ 16
t

[(t – 1)d1 + (t – 2)d2 ++ dt – 1]}s + {42[(t – 1)d1 + 

(t – 2)d2 ++ dt − 1] + 8[ 2
1d  + 2 2

2d  ++ t(d1 + d2 ++ 
dt − 1)2]} using unbalanced-t-way split to multiply two 
s-word integers. 
Proof. See Appendix 2. 
 

Corollary 1. The term (t – 1)d1 + (t – 2)d2 ++dt – 1 in 
Theorem 2 is always greater than 0. 
 
4.2. The Optimal Method 

 
This subsection presents the synthesis of two basic 

split methods from Subsection 4.1 to generate various 
multiplication methods. Theorem 7 demonstrates the 
most efficient method. Two generalized models are used 
for split way multiplication, as follows:  
n-times recursive-balanced-t-way split and n-times 
recursive-unbalanced-t-way split. 

 
Theorem 3 evaluates the number of base instructions 

of n-times recursive-balanced-t-way split.  
 

Theorem 3. Using the n-times recursive-balanced-t-way 
split, the number of base instructions to multiply two 

s-word integers is 8 1
2

nt
t
+ 

 
 

s2 + 42 1
2

nt + 
 
 

s – 40s, where 

t ≥ 2, n ≥ 1 and tn ≤ s. 
 
Theorem 4 finds the n that results in optimal 

performance of n-times recursive-balanced-t-way split. 
 

Theorem 4. The n-times recursive-balanced-t-way split 
performs the minimal number of base instructions as n = 

4 [ln(2 ) ln( 1)]log
21[ln( 1) ln 2]t
s t t

t
 − +
 + − 

. 

 
Using Theorems 3 and 4, Figure 3 plots the curve of 

the number of base instructions of n-times 

recursive-balanced-t-way split, that is, 8 1
2

nt
t
+ 

 
 

s2 + 

42 1
2

nt + 
 
 

s – 40s when n = 4 [ln(2 ) ln( 1)]log
21[ln( 1) ln 2]t
s t t

t
− +
+ −

, as 

1 ≤ s ≤ 2000, t ≥ 2. The recursive-balanced-2-way split, 

s-word integer

2−s
t d

1−s
t d 1−− t

s
t d 1 2 1−+ + + + t

s
t d d d⋅⋅⋅⋅⋅⋅⋅

Fig. 2. Unbalanced-t-way split 

 
Fig. 3. Plot of the number of base instructions of 
n-times recursive-balanced-t-way split as 1 ≤ s ≤ 2000, t 

≥ 2 and 4 [ln(2 ) ln( 1)]log
21[ln( 1) ln 2]t
s t tn

t
− +

=
+ −

 



that is, (t = 2), results in superior performance in 
comparison to recursive-balanced-t-way split as t > 2. 
Theorem 5 demonstrates that using 
recursive-balanced-2-way split to multiply two s-word 
integers is more efficient than using 
recursive-balanced-t-way split as t > 2.  
 
Theorem 5. Using recursive-balanced-2-way split to 
multiply two long s-word integers is more efficient than 
using recursive-balanced-t-way split when t > 2. 

 
Subsequently, Lemma 1 and Theorem 6 demonstrate 

that using recursive-balanced-t-way split is superior to 
recursive-unbalanced-t-way split, and Theorem 7 
concludes that recursive-balanced-2-way split is the 
optimal split method to achieve optimal performance for 
implementing the large integer multiplication of two 
s-word integers by using the classical multiplication. 

 
Lemma 1. Using balanced-t-way split to multiply two 
s-word integers is more efficient than using 
unbalanced-t-way split. 
 
Theorem 6. Using recursive-balanced-t-way split to 
multiply two s-word integers is more efficient than using 
recursive-unbalanced-t-way split.  
 
Theorem 7. Using n(= log2(0.13515×s))-times 
recursive-balanced-2-way split to multiply two s-word 
integers is more efficient than using all of the other split 
methods by using the classical multiplication. 
Proof. The results of Theorems 5 and 6 show that the 
recursive-balanced-2-way split multiplies two long 
s-word integers is more efficient than the 
recursive-balanced-t-way split (when t > 2) and the 
recursive-unbalanced-t-way split. By Theorem 4, the n(= 
log2(0.13515×s))-times recursive-balanced-2-way 
method achieves optimal performance in multipling two 
s-word integers by using the classical multiplication. 
 
5 Experiments And Discussions 

 
In order to confirm theoretical results, this study used 

assembly language to implement a number of 
experiments on the Code Composer Studio (CCS) 
platform (TI DSP C55x family platform [19]) without 
requiring any special coding skills. The TI DSP C5510 
family is an RISC-like processor (1 word = 16 bits), 
which typically has low computational power and 
memory; therefore, it is included in several smart devices. 

 
5.1. Experiments on the large integer 

multiplication 
 
These experiments implemented large integer 

multiplication from 8 words (1 word = 16 bits) to 512 
words using classical multiplication, the balanced-2-way 
(i.e., Karatsuba−Ofman method), balanced-t-way split, 
recursive-balanced-2-way split, and unbalanced-t-way 

split. Table 5 shows the comparison among performances 
of classical multiplication, balanced-2-way split, 
balanced-t-way split, and recursive-balanced-2-way split. 
Table 6 shows the results of experiments on the 
performance of unbalanced methods of splitting the 
operand. 

A comparison of Table 5 with 6 revealed that the 
proposed recursive-balanced-2-way split exhibited 
superior performance as the demonstrated result of 
Theorem 7. The application of the proposed method 
results in substantial improvement to the performance of 
large integer multiplication when the size of the operand 
increases. According to the results of these experiments 
and the teoretical results of Section 4, the proposed 
recursive-balanced-2-way split method exhibits optimal 
performance. 

 
5.2. Experiments on modular multiplication and 

modular exponentiation 
 
Modular multiplication is the kernel of modular 

exponentiation, which is the main operation of several 
security protocols. For computing modular multiplication, 
this study considered whether multiplication and 
reduction are separated or integrated. The separated 
approach first multiplies two operands, and subsequently 
performs a Montgomery reduction, that is, KCM method 
[18] while alternating between multiplication and 
reduction in the integrated approach (i.e., CIOS method 
[20]). This study used the separated method to implement 
modular multiplication with the proposed 
recursive-balanced-2-way method, and compared the 
performance with other modular multiplication methods 
in Table 7. As shown in Table 8, modular exponentiation 
was used to compare other modular multiplication 
methods with modular multiplication for the proposed 

Table 5.Numberof CPU cycles for the large integer multiplication 

Length 
(bit) 

Classical 
mul. 

Balanced-
2-way 

Balanced-
4-way 

The 
proposed 
scheme1 

8192 2,140,139 1,663,872 1,478,400 657,483 
4096 535,296 419,059 378,752 215,406 
2048 137,896 116,807 99,264 69,924 
1024 34,543 30,015 27,104 22,369 
512 8,669 7,911 7,920 6,987 
256 2,184 2,081 2,552 2,081 
128 539 596 924 539 

NOTE.1. the proposed scheme is n(=log2(0.13515×s))-times 
recursive-balanced-2-way 

 
Table 6. Number of CPU cycles for the multiplication with unbalanced 

methods 

Length 
(bit) 

Unbalanced 
2way 

Split ratio: 
1:3 

Unbalanced 
3way 

Split ratio: 
1:1:2 

Unbalanced 
4way 

Split ratio: 
1:1:2:4 

Unbalanced 
5way 

Split ratio: 
1:1:1:1:4 

8192 2,883,648 2,293,081 3,030,700 3,460,672 
4096 725,843 581,292 771,107 882,464 
2048 183,926 149,334 199,492 229,264 
1024 47,214 39,339 53,231 61,640 
512 12,420 10,837 14,986 17,572 
256 3,413 3,210 4,586 5,474 
128 1,007 1,053 1,566 1,909 

 



method. Table 9 shows the increase in speed of modular 
exponentiation with the proposed 
recursive-balanced-2-way method versus that with other 
modular multiplication methods. Other modular 
multiplication methods require 1.28x-2.10x the 
computational cost required with the proposed 
recursive-balanced-2-way method for the processors of 
smart devices. Moreover, 1.58x-1.94x the computational 
cost is required for other modular multiplication methods 
versus modular multiplication with the proposed method 
when the bit length at 3072 satisfies the NIST 
recommendations. The energy consumption of software is 
closely related to execution time. The proposed scheme is 
an energy-saving method to implement security protocols 
in mobile devices and low-end devices. 

 
6 Conclusions 

 
This paper proposes a recursive-balanced-2-way split 

method that uses the divide-and-conquer concept to split 
the operand to ensure that long integer multiplication is 
executed as quickly as possible. This study demonstrated 
that the proposed “n(= log2(0.13515×s))-times 
recursive-balanced-2-way split” method achieved the 
optimal performance for multiplying two s-words based 
on classical multiplication. This method can be easily 
implemented by recursive call procedures to substantially 

reduce the complexity of programming flow. Modular 
exponentiations with other modular multiplication 
methods require 1.28x-2.10x the computational cost 
required with the proposed recursive-balanced-2-way 
method for TI DSP TMS320C55x family with bit length 
ranging from 1024 to 4096. The proposed scheme is an 
energy-saving method to implement security protocols in 
mobile devices and low-end devices. The proposed 
method substantially improves the performance of large 
integer multiplication for processors of low-end devices. 
Smart low-end devices using the proposed method can 
perform security protocols and PKI functions practically, 
and satisfy the security recommendations of NIST. 
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Table 8. Number of CPU cycles for modular exponentiation with 
different modular multiplications where the bit lengths of base, 

modulus, and exponent are the same length 
Length 

(bit) 
#Cycles of Algorithms 

CIOS [20] KCM [18] The proposed scheme 
4096 3,668,877,312 2,753,433,600 1,749,835,776 
3072 1,563,287,040 1,271,411,712 806,068,224 
2048 464,277,504 415,128,576 271,104,000 
1024 58,790,400 53,902,848 42,158,592 

 
Table 9. Speedup of modular exponentiation with the proposed 

method vs. other modular multiplications where the bit lengths of 
base, modulus, and exponent are the same length (the CPU Cycles of 
other modular reductions/ the CPU Cycles of the proposed method) 

 1024 bits 2048 bits 3072 bits 4096 bits 
CIOS[20] 139% 171% 194% 210% 
KCM [18] 128% 153% 158% 157% 

 

http://csrc.nist.gov/publications/drafts/800-57-part3/Draft_SP800-57-Part3_Recommendationforkeymanagement.pdf
http://csrc.nist.gov/publications/drafts/800-57-part3/Draft_SP800-57-Part3_Recommendationforkeymanagement.pdf
http://csrc.nist.gov/publications/drafts/800-57-part3/Draft_SP800-57-Part3_Recommendationforkeymanagement.pdf
http://www.ftrg.org/xe/?mid=joc_published&category=1680
http://www.ftrg.org/xe/?mid=joc_published&page=1&category=736


[13] H. Eberle, S. Shantz, V. Gupta, N. Gura, L. Rarick, 
and L. Spracklen, "Accelerating Next-Generation 
Public-Key Cryptosystems on General-Purpose 
CPUs," IEEE Macro, vol. 25, issue 2, pp 52-59, 2005. 

[14] A. Karatsuba and Y. Ofman, "Multiplication of 
multidigit numbers on automata," Soviet Phys. 
Doklagy, vol.7, no.7, pp595-596, 1963. 

[15] C. Lederer, R. Mader, M. Koschuch, J. Grobschadl, 
A. Szekely, and S. Tillich, "Energy-efficient 
implementation of ECDH key exchange for wireless 
sensor networks," WISTP 2009, LNCS 5746, pp. 
112-127, 2009. 

[16] A. J. Menezes, P. C. van Oorschot, and S. A. 
Vanstone, Handbook of Applied Cryptography, CRC 
Press, 1997. 

[17] D. E. Knuth, The Art of Computer Programming, 
Addison-Wesley, 1969, 2nd edition, 3rd edition, 1998. 

[18] J. Groβschädl, R. M. Avanzi, E. Savas, and S. Tillich: 
"Energy-efficient software implementation of large 
integer modular arithmetic," CHES 2005, LNCS 3659, 
pp.75-90, 2005. 

[19] Texas Instruments, "C5000 DSPs: Architecture & 
Peripheral Features," Available: http://www.ti.com. 

[20] C. K. Koc, T. Acar, and B. S. Kaliski: "Analyzing 
and computing Montgomery algorithms," IEEE 
Macro, 16(3):26-33, 1996. 

 
 

http://www.ti.com/

	Abstract
	References

