
The Optimal Split Method for Large Integer Multiplication on Low-End Devices

Ren-Junn Hwang, Loang-Shing Huang, and Feng-Fu Su
Department of Computer Science and Information Engineering

Tamkang University
Taiwan (R.O.C.)

junhwang@ ms35.hinet.net

Abstract
This paper proposes a “recursive-balanced-2-way split”
method, which is an optimal method for large integer
multiplication on mobile devices and smart low-end
devices when implementing modern cryptographic
applications. The proposed method is based on the
divide-and-conquer concept. The proposed method first
recursively bisections multiplier and multiplicand in
threshold times. Subsequently, classical multiplication
calculates the products of the split multiplier and
multiplicand blocks. Finally, the products of the blocks
are gradually integrated to obtain the product of the large
integers. This study demonstrated that the n-times
recursive-balanced-2-way split method, where n is the
floor of log2(0.13515×s), obtains the optimal performance
in multiplying two s-words based on classical
multiplication. This method can be implemented by
recursive call procedures, and reduces code size and
computational cost substantially. The proposed scheme is
an energy-saving method to implement security protocols
in mobile devices and low-end devices. Therefore, it is
suitable for realizing modern public-key cryptosystems
on low-end devices, in which the framework is based on
modular exponentiation and modular multiplication. The
experiment results show that modular exponentiation
combined with other modular multiplication methods
uses 1.28x-2.10x the computational cost required in the
proposed method for the bit length of the modulus from
1024 bits to 4096 bits on Texas Instruments
TMS320C55x DSP. Low-end devices based on the
proposed method perform security protocols and PKI
functions practically and satisfy the security
recommendations of NIST.

Keywords: Classical multiplication, Divide-and-conquer,
Karatsuba-Ofman method, Public-key cryptosystem.

1 Introduction

Current mobile communication technology has

changed our lives with a wide variety of smart low-end
devices. The kernel of a smart low-end device is usually
one or more than one RISC-like processor. These
RISC-like processors, featuring single-precision
multiplication, addition, store, and load instructions as
their word-based architectures, have special features,
such as low computation and low storage, and must be
carefully considered when developing particular
applications. A number of special applications, especially
modern cryptography, require an operation of integers
longer than 100 decimal digits. For example, because of

the progress in integer factorization and computer power
[1], the National Institute of Standards and Technology
(NIST) in the United States changed their recommended
key sizes for users or devices from 1024-bit to 2048-bit
for the RSA digital signature or key transportation and
Diffie-Hellman key agreement [2][3]. Such integers are
too long to fit into a single word of the modern
microprocessor. In addition, large computation is
required to realize modern cryptography; therefore, more
storage space is required. A particular approach must be
determined to achieve reasonable performances on such
an application.

Some applications, such as pervasive computing [4]

and mobile multimedia [6], need some cryptographic
procedures to keep secrets. Numerous security protocols
[6][7], , PKI functions (Public Key Infrastructure), and
cryptographic methods are based on modular
exponentiation computation, including RSA
cryptosystem [8], elliptic curve cryptography [9], DSA
[10], and Diffie-Hellman Key Exchange [11]. The
modular exponentiation procedure requires several
modular multiplications. The kernel operation is a large
integer multiplication for modular exponentiation or
modular multiplication. The proportion of instructions
spent on a large integer multiplication is 86% for
RSA-1024, 63% for ECC-160, and 90% for ECC-163
[12][13]. Consequently, this study focused on
accelerating large integer multiplication operations.

Two methods are suitable for implementing large

integer multiplications on modern microprocessors. One
method is classical multiplication, which is easy to
implement, but exhibits inferior performance when the
size of the operand becomes increasingly larger. The
other method is the Karatsuba-Ofman method [14], which
splits the operand into two equally small blocks and
constructs them with classical multiplication. When the
operand is sufficiently large, the Karatsuba-Ofman
method exhibits superior performance in comparison to
direct classical multiplication. However, the performance
of large integer multiplication can only improve to a
limited extent because the Karatsuba-Ofman method only
splits the operand once.

This study researched a number of basic methods to

split the operand according to the divide-and-conquer
concept, synthesized them into various methods, and
analyzed their performances before deciding on the
optimal method for large integer multiplications.
Moreover, this study also determined the threshold time

to split the operands. Based on these two crucial decisions,
large integer multiplication achieved optimal
performance on microprocessors. The energy
consumption of software is closely related to execution
time [15]. The proposed method enables low-end and
mobile devices to consume less energy to perform
security protocols.

Section 2 presents reviews and analysis of some

related works. The proposed method is described in
Section 3, followed by the analysis and demonstration of
the proposed method in Section 4, and simulations and
experiments in Section 5. Finally, Section 6 offers
conclusions.

2 Analyses of Related Works

This section introduces two multiplication

algorithms. Subsections 2.1 and 2.2 introduce and analyze
the classical multiplication and the Karatsuba-Ofman
method, respectively.

2.1. Classical Multiplication

Classical multiplication is also called the

“Pencil-and-Paper” method. This method is
multiplication on operand scanning. The idea of this
Pencil-and-Paper method is shown in Algorithm 1 [16].

Classical multiplication is easy to implement because

no extra carry bit is present. Therefore, classical
multiplication is easy to implement in high-level
programming languages that provide a double-precision
integer data type. For example, common extensions of the
C and C++ programming languages support the unsigned
data type for 64-bit integers. Java language provides the
long type, which has a precision of 64 bits on all platforms
[13].The word complexity of classical multiplication is
O(s2) [17], where s is the word length of the operand.

Table 1 [18] shows the number of base instructions for
classical multiplication, for which each base instruction
requires the same CPU cycle in RISC CPUs such as ARM.
Classical multiplication exhibits excellent performance
when the operand length is short. However, the
performance of classical multiplication degenerates
rapidly with the increase of operand length.

2.2. Karatsuba-Ofman Method

Karatsuba and Ofman proposed the

Karatsuba-Ofman method [14]. This method reduces the
multiplication of two s-word operands to three
multiplications of size (s/2), but only at the cost of an
increased number of large integer additions or
subtractions. Each of these three (s/2)-word
multiplications can be used with classical multiplication.
According to the Karatsuba-Ofman method, the product P
= A × B = [Ah || Al]×[Bh || Bl] can be expressed as the
following two equations, where the bit length of one word
is w:
P = A × B
= AhBh2sw + (AhBl + AlBh)2sw/2 + AlBl20 (1)
= AhBh 2sw + [(Ah + Al)(Bh + B0) – AhBh –AlBl]2sw/2
+ AlBl20 (2)
When the two equations are compared, Equation (2) has
one less (s/2)-word multiplication, two more (s/2)-word
additions, one more s-word addition/subtraction, and

Algorithm 1. Classical multiplication (Pencil-and-Paper
method)
Input: Integers A = (as-1as-2…a1a0)w, B = (bs-1bs-2…b1b0)w.
Output: The product P = A×B = (p2s-1p2s-2…p1p0)w in radix
w representation.
1. P ← 0
2. for i from 0 to s −1 do
3. u←0
4. for j from 0 to s −1 do
5. (u,v) ← aj × bi + pi+j + u
6. pi+j ← v
7. end for
8. ps+i ← u
9. end for

Table 1. The number of base instructions for two s-words classical
multiplication [14]

Algorithm # Mul # Add # Load # Store #Total
Classical

Multiplication s2 4s2 2s2 + s s2 + s 8s2 + 2s

Algorithm 2. Large integer addition [12]
Input: Integers A = (as-1as-2…a1a0)w, B = (bs-1bs-2…b1b0)w.
Output: (ε, C) where C = A + B mod 2sw = (cs-1cs-2…c1c0)w
in radix w representation, ε is the carry bit, and 1 word has
w bits.
1. (ε, c0) ← a0 + b0
2. for i from 0 to s −1 do
3. (ε, ci) ← ai + bi + ε
4. end for
5. return (ε, C)

Table 2. The number of base instructions for a large integer

addition/subtraction
Algorithm # Add/Sub # Load # Store #Total

Multipresion
Addition/Subtraction 2s 2s s 5s

Table 3. the number of classical mul., large integer add./sub. for the

Karatsuba-Ofman method

Algorithm

Classical
multiplication Addition/Subtraction

Length
(word) # Length

(word) #

Karatsuba-Ofman method s/2 3
s 3

s/2 2

Table 4. The number of base instructions for the Karatsuba-Ofman method

Algorithm # Mul #
Add/Sub # Load # Store #Total

Karatsuba-Ofman
method (3/4)s2 3s2 + 8s

(3/2)s2
+

(19/2)s

(3/4)s2 +
(11/2)s 6s2 + 23s

more memory accesses because it contains more elements.
For the large value of s, the cost of the additions,
subtractions, and memory accesses are insignificant
relative to the cost of the multiplications.

The word complexity of the Karatsuba-Ofman

method is O(slog23) [17], which exhibits superior
performance to classical multiplication. To discover the
computational cost of the Karatsuba-Ofman method, this
study estimated the number of base instructions for a
large integer addition. This study assumed that addition
and subtraction operations consume the same
computational cost. Algorithm 2 is a large integer
addition. Table 2 shows the number of base instructions in
Algorithm 2. Table 3 shows the number of classical
multiplications and additions/subtractions for the
Karatsuba-Ofman method. Finally, Table 4 combines
Table 1, Table 2, and Table 3 to demonstrate the number
of base instructions for the Karatsuba-Ofman method. A
comparison of Tables 1 and 4 reveals that the
Karatsuba-Ofman method is more efficient than classical
multiplication for large integer multiplication.

3 The Proposed Method

To clearly describe the proposed method, this study

defines the following notations:
 |A|: denotes the word length of integer A.
 There are w bits in one word.
 Ahigh, Alow: denote (A/2(sw/2)) and (A mod 2(sw/2)),

respectively, where |A| = s.

Modern microprocessors and digital signal

processors have internal data pathways and internal
registers with a fixed number of bits. A 32-bit processor
will process 32-bit words, a 64-bit processor will process
64-bit words. The internal registers are sized to
accommodate the word length with a single transfer.
Generally, the more bits a processor can handle, the faster

it can run. The instructions of microprocessors and digital
signal processors are entered or stored in a storage device.
Therefore, all word-sized transfers must have the
operands in memory residing on word-boundaries.
Operations on word boundary are more efficient than
those on bit level, because processors possess word-based
architectures. This section proposes an optimal method
for modern microprocessors and digital signal processors
based on the divide-and-conquer concept to accelerate the
speed of large integer multiplication. The proposed
method recursively bisections multiplier and multiplicand
n (= log2(0.13515×s)) times. Subsequently, classical
multiplication evaluates the products of the split
multiplier and multiplicand blocks. Finally, the products
of the blocks are gradually integrated to obtain the
product of the large numbers. Algorithm 3 details the
proposed method, named “recursive-balanced-2-way
split”. Subsection 4.2 demonstrates that the proposed n(=
log2(0.13515×s))-times recursive-balanced-2-way split
method achieves optimal performance.

4 Analysis of the Proposed Method

This section demonstrates that the performance of the

proposed method, recursive-balanced-2-way split, is
optimal for large integer multiplications on
microprocessors and digital signal processors, which
perform each word operation in one cycle, such as
RISC-like processors. Subsection 4.1 presents the
definition and evaluation of two basic methods for
splitting the operand: balanced-t-way split and
unbalanced-t-way split. Subsection 4.2 demonstrates that
the n(=log2(0.13515×s))-times recursive-balanced-
2-way split method achieves optimal performance in
multiplying two s-words based on classical multiplication.
Without loss of generality, this study paper assumed that
both multiplier and multiplicand are s-word large integers,
and each word is w bits.

4.1. Two Basic Methods

Two basic methods are used to split the operand, that

is, balanced-t-way split and unbalanced-t-way split.
Synthesizing these two methods can generate any model
for splitting operands for multiplication.

4.1.1. Balanced-t-way Split

Figure 1 shows the framework of splitting an s-word
integer into t equal parts. The balanced-t-way split
performs Equation (3) to evaluate the product of large

s-word integer

s/ts/t s/t s/t⋅⋅⋅⋅⋅⋅⋅

Fig. 1. Balanced-t-way split

Algorithm 3. The recursive-balanced-2-way split
Function: Mult(n, A, B)
// Input: Integers A = (as-1as-2…a1a0)w, B =
(bs-1bs-2…b1b0)w in radix w representation, A = Ahigh2sw/2 +
Alow, B = Bhigh2sw/2 + Blow where |A| = |B| = s, one word has
w bits, predetermined n = log2(0.13515×s).
// Output: The 2s-word result of the product of A and B.
If n > 0, then
// recursively bisection operands.
Height_part= Mult((n – 1), Ahigh, Bhigh);
Low_part= Mult((n – 1), Alow, Blow);
Return (Height_part×2sw + [Mult((n – 1), (Ahigh + Alow),

(Bhigh + Blow)) – Height_part – Low_part] × 2sw/2 +
Low_part)

else
// perform the classical multiplication to multiply A and
B.
 Return (A × B).
Endif.

integers A and B from the split blocks. The multiplication,
such as AiBj, is classical multiplication with (s/t)-words.

P = A × B

=
1 1

0 0
2 2

sw swt ti j
t t

i j
i j

A B
− −× ×

= =

  
×  

   
∑ ∑

= At – 1Bt – 12(2t – 2)(sw/t) + (At – 1Bt – 2 + At – 2Bt – 1)2(2t – 3)(sw/t)
++ (At – 1B1 + At – 2B2 ++ A1Bt – 1)2(t)(sw/t) + (At – 1B0 +
At – 2B1 ++ A0Bt – 1)2(t – 1)(sw/t)+(At – 2B0 + At – 3B1 ++
A0Bt – 2) 2(t – 2)(sw/t) ++ A0B020 (3)
According to the Karatsuba-Ofman method, each cross
term in Equation (3) can be rewritten as the following
non-cross term:
AiBj + AjB i= (Ai + Aj)(Bi + Bj) − AiBi − AjBj, where i ≠ j.

After transforming each possible cross term,

Theorem 1 demonstrates the number of base instructions
using balanced-t-way split to compute the large integer
multiplication of two s-word integers. Due to the
limitations of the number of pages, the paper omitted the
proofs of the following theorems. Readers interested in
understanding the proofs, please contact the authors.

Theorem 1. Using balanced-t-way split to multiply two
s-word integers, the number of base instructions is
4 4t

t
+ s2 + (21t − 19)s, where t ≥ 2.

4.1.2. Unbalanced-t-way Split

In the unbalanced-t-way split method, the s-word
integer is split into t unequal smaller parts, such as the
example shown in Figure 2. Theorem 2 demonstrates the
number of base instructions in unbalanced-t-way split.

Theorem 2. The sequence {d1, ,dt – 1}satisfies the
following conditions:
(1) at least one di > 0
(2) d1 + d2 ++ dt – 1 > 0
(3) If di > 0, then dj ≥ dj – 1 for j = i, i – 1, , 2
(4) If di < 0, then dj ≥ dj + 1 for j = i, i + 1, , t – 2.

Then number of base instructions is 4 4t
t
+ s2 + {(21t – 19)

+ 16
t

[(t – 1)d1 + (t – 2)d2 ++ dt – 1]}s + {42[(t – 1)d1 +

(t – 2)d2 ++ dt − 1] + 8[2
1d + 2 2

2d ++ t(d1 + d2 ++
dt − 1)2]} using unbalanced-t-way split to multiply two
s-word integers.
Proof. See Appendix 2.

Corollary 1. The term (t – 1)d1 + (t – 2)d2 ++dt – 1 in
Theorem 2 is always greater than 0.

4.2. The Optimal Method

This subsection presents the synthesis of two basic

split methods from Subsection 4.1 to generate various
multiplication methods. Theorem 7 demonstrates the
most efficient method. Two generalized models are used
for split way multiplication, as follows:
n-times recursive-balanced-t-way split and n-times
recursive-unbalanced-t-way split.

Theorem 3 evaluates the number of base instructions

of n-times recursive-balanced-t-way split.

Theorem 3. Using the n-times recursive-balanced-t-way
split, the number of base instructions to multiply two

s-word integers is 8 1
2

nt
t
+ 

 
 

s2 + 42 1
2

nt + 
 
 

s – 40s, where

t ≥ 2, n ≥ 1 and tn ≤ s.

Theorem 4 finds the n that results in optimal

performance of n-times recursive-balanced-t-way split.

Theorem 4. The n-times recursive-balanced-t-way split
performs the minimal number of base instructions as n =

4 [ln(2) ln(1)]log
21[ln(1) ln 2]t
s t t

t
 − +
 + − 

.

Using Theorems 3 and 4, Figure 3 plots the curve of

the number of base instructions of n-times

recursive-balanced-t-way split, that is, 8 1
2

nt
t
+ 

 
 

s2 +

42 1
2

nt + 
 
 

s – 40s when n = 4 [ln(2) ln(1)]log
21[ln(1) ln 2]t
s t t

t
− +
+ −

, as

1 ≤ s ≤ 2000, t ≥ 2. The recursive-balanced-2-way split,

s-word integer

2−s
t d

1−s
t d 1−− t

s
t d 1 2 1−+ + + + t

s
t d d d⋅⋅⋅⋅⋅⋅⋅

Fig. 2. Unbalanced-t-way split

Fig. 3. Plot of the number of base instructions of
n-times recursive-balanced-t-way split as 1 ≤ s ≤ 2000, t

≥ 2 and 4 [ln(2) ln(1)]log
21[ln(1) ln 2]t
s t tn

t
− +

=
+ −

that is, (t = 2), results in superior performance in
comparison to recursive-balanced-t-way split as t > 2.
Theorem 5 demonstrates that using
recursive-balanced-2-way split to multiply two s-word
integers is more efficient than using
recursive-balanced-t-way split as t > 2.

Theorem 5. Using recursive-balanced-2-way split to
multiply two long s-word integers is more efficient than
using recursive-balanced-t-way split when t > 2.

Subsequently, Lemma 1 and Theorem 6 demonstrate

that using recursive-balanced-t-way split is superior to
recursive-unbalanced-t-way split, and Theorem 7
concludes that recursive-balanced-2-way split is the
optimal split method to achieve optimal performance for
implementing the large integer multiplication of two
s-word integers by using the classical multiplication.

Lemma 1. Using balanced-t-way split to multiply two
s-word integers is more efficient than using
unbalanced-t-way split.

Theorem 6. Using recursive-balanced-t-way split to
multiply two s-word integers is more efficient than using
recursive-unbalanced-t-way split.

Theorem 7. Using n(= log2(0.13515×s))-times
recursive-balanced-2-way split to multiply two s-word
integers is more efficient than using all of the other split
methods by using the classical multiplication.
Proof. The results of Theorems 5 and 6 show that the
recursive-balanced-2-way split multiplies two long
s-word integers is more efficient than the
recursive-balanced-t-way split (when t > 2) and the
recursive-unbalanced-t-way split. By Theorem 4, the n(=
log2(0.13515×s))-times recursive-balanced-2-way
method achieves optimal performance in multipling two
s-word integers by using the classical multiplication.

5 Experiments And Discussions

In order to confirm theoretical results, this study used

assembly language to implement a number of
experiments on the Code Composer Studio (CCS)
platform (TI DSP C55x family platform [19]) without
requiring any special coding skills. The TI DSP C5510
family is an RISC-like processor (1 word = 16 bits),
which typically has low computational power and
memory; therefore, it is included in several smart devices.

5.1. Experiments on the large integer

multiplication

These experiments implemented large integer

multiplication from 8 words (1 word = 16 bits) to 512
words using classical multiplication, the balanced-2-way
(i.e., Karatsuba−Ofman method), balanced-t-way split,
recursive-balanced-2-way split, and unbalanced-t-way

split. Table 5 shows the comparison among performances
of classical multiplication, balanced-2-way split,
balanced-t-way split, and recursive-balanced-2-way split.
Table 6 shows the results of experiments on the
performance of unbalanced methods of splitting the
operand.

A comparison of Table 5 with 6 revealed that the
proposed recursive-balanced-2-way split exhibited
superior performance as the demonstrated result of
Theorem 7. The application of the proposed method
results in substantial improvement to the performance of
large integer multiplication when the size of the operand
increases. According to the results of these experiments
and the teoretical results of Section 4, the proposed
recursive-balanced-2-way split method exhibits optimal
performance.

5.2. Experiments on modular multiplication and

modular exponentiation

Modular multiplication is the kernel of modular

exponentiation, which is the main operation of several
security protocols. For computing modular multiplication,
this study considered whether multiplication and
reduction are separated or integrated. The separated
approach first multiplies two operands, and subsequently
performs a Montgomery reduction, that is, KCM method
[18] while alternating between multiplication and
reduction in the integrated approach (i.e., CIOS method
[20]). This study used the separated method to implement
modular multiplication with the proposed
recursive-balanced-2-way method, and compared the
performance with other modular multiplication methods
in Table 7. As shown in Table 8, modular exponentiation
was used to compare other modular multiplication
methods with modular multiplication for the proposed

Table 5.Numberof CPU cycles for the large integer multiplication

Length
(bit)

Classical
mul.

Balanced-
2-way

Balanced-
4-way

The
proposed
scheme1

8192 2,140,139 1,663,872 1,478,400 657,483
4096 535,296 419,059 378,752 215,406
2048 137,896 116,807 99,264 69,924
1024 34,543 30,015 27,104 22,369
512 8,669 7,911 7,920 6,987
256 2,184 2,081 2,552 2,081
128 539 596 924 539

NOTE.1. the proposed scheme is n(=log2(0.13515×s))-times
recursive-balanced-2-way

Table 6. Number of CPU cycles for the multiplication with unbalanced

methods

Length
(bit)

Unbalanced
2way

Split ratio:
1:3

Unbalanced
3way

Split ratio:
1:1:2

Unbalanced
4way

Split ratio:
1:1:2:4

Unbalanced
5way

Split ratio:
1:1:1:1:4

8192 2,883,648 2,293,081 3,030,700 3,460,672
4096 725,843 581,292 771,107 882,464
2048 183,926 149,334 199,492 229,264
1024 47,214 39,339 53,231 61,640
512 12,420 10,837 14,986 17,572
256 3,413 3,210 4,586 5,474
128 1,007 1,053 1,566 1,909

method. Table 9 shows the increase in speed of modular
exponentiation with the proposed
recursive-balanced-2-way method versus that with other
modular multiplication methods. Other modular
multiplication methods require 1.28x-2.10x the
computational cost required with the proposed
recursive-balanced-2-way method for the processors of
smart devices. Moreover, 1.58x-1.94x the computational
cost is required for other modular multiplication methods
versus modular multiplication with the proposed method
when the bit length at 3072 satisfies the NIST
recommendations. The energy consumption of software is
closely related to execution time. The proposed scheme is
an energy-saving method to implement security protocols
in mobile devices and low-end devices.

6 Conclusions

This paper proposes a recursive-balanced-2-way split

method that uses the divide-and-conquer concept to split
the operand to ensure that long integer multiplication is
executed as quickly as possible. This study demonstrated
that the proposed “n(= log2(0.13515×s))-times
recursive-balanced-2-way split” method achieved the
optimal performance for multiplying two s-words based
on classical multiplication. This method can be easily
implemented by recursive call procedures to substantially

reduce the complexity of programming flow. Modular
exponentiations with other modular multiplication
methods require 1.28x-2.10x the computational cost
required with the proposed recursive-balanced-2-way
method for TI DSP TMS320C55x family with bit length
ranging from 1024 to 4096. The proposed scheme is an
energy-saving method to implement security protocols in
mobile devices and low-end devices. The proposed
method substantially improves the performance of large
integer multiplication for processors of low-end devices.
Smart low-end devices using the proposed method can
perform security protocols and PKI functions practically,
and satisfy the security recommendations of NIST.

References

[1] RSA Laboratories, "RSA challenges," Available from

URL: http://www.rsasecurity.com/rsalabs/.
[2] NIST, "SP 800-57 Part 1, Recommendation for Key

Management," NIST Special Publication 800-57,
March 2007, Available from URL:
http://csrc.nist.gov/groups/ST/toolkit/documents/
SP800-57Part1_3-8-07.pdf/.

[3] NIST: "SP 800-57 Part 3, Recommendation for Key
Management," NIST Special Publication 800-57,
August 2008, Available from URL:
http://csrc.nist.gov/publications/drafts/800-57-part3/D
raft_SP800-57-Part3_Recommendationforkeymanage
ment.pdf.

[4] S. Silas, K. Ezra, E. B. Rajsingh, "A novel fault
tolerant service selection framework for pervasive
computing," Human-centric Computing and
Information Sciences 2012, 2:5.

[5] H. Luo, M. Shyu, "Quality of service provision in
mobile multimedia - a survey," Human-centric
Computing and Information Sciences 2011, 1:5.

[6] M. D. Kettani, B. En-Nasry, "MidM : an Open
Architecture for Mobile Identity," Journal of
Convergence, vol.2, no.2, pp.25- 32, 2011.

[7] Y. Li, L. Xiao, S. Chen, H. Tian, L. Ruan, and B. Yu,
"Parallel Point-multiplication based on the Extended
Basic Operations on Conic Curves over Ring Zn,"
Journal of Convergence, vol.2, no.1, pp.69-78, 2011.

[8] R. Rivest, A. Shamir, and L. Adleman, "A method for
obtaining digital signatures and public-key
cryptosystems," Communication on ACM, vol.21,
pp.120-126, 1978.

[9] Koblitz, N., "Elliptic curve cryptosystems," Math.
Comp. 48, 203-209, 1987.

[10] NIST, "FIPS PUB 186-3, Digital Signature Standard
(DSS) ," NIST Publication FIPS 186-3, June 2009,
Available from URL:
http://csrc.nist.gov/publications/fips/fips186-3/.pdf.

[11] W. Diffie and M. E. Hellman, "New directions in
cryptography," IEEE Trans. On Information Theory,
vol.IT-22, no.6, pp.638-654, Nov. 1976.

[12] D. Hankerson, A. Menezes, and S. Vanstone, Guide
to Elliptic Curve Cryptography, Springer, 2004.

Table 7. Number of CPU cycles for integrated Montgomery modular
multiplication and the proposed recursive-balanced-2way method

Length
(bit)

#Cycles of Algorithms

CIOS1 [20] KCM2 [18] The proposed scheme3
8192 2,402,948 1,933,718 927,329
4096 597,148 448,150 284,804
3072 339,255 275,914 174,928
2048 151,132 135,133 88,250
1024 38,275 35,093 27,447

Note:
1. Alternating between multiplication and reduction.
2. Performing Karatsuba−Ofman method to multiply the operand first

and then perform the Montgomery reduction [18].
3. Performing the proposed recursive-balanced-2-way method to

multiply the operand first and then perform the Montgomery
reduction.

Table 8. Number of CPU cycles for modular exponentiation with
different modular multiplications where the bit lengths of base,

modulus, and exponent are the same length
Length

(bit)
#Cycles of Algorithms

CIOS [20] KCM [18] The proposed scheme
4096 3,668,877,312 2,753,433,600 1,749,835,776
3072 1,563,287,040 1,271,411,712 806,068,224
2048 464,277,504 415,128,576 271,104,000
1024 58,790,400 53,902,848 42,158,592

Table 9. Speedup of modular exponentiation with the proposed

method vs. other modular multiplications where the bit lengths of
base, modulus, and exponent are the same length (the CPU Cycles of
other modular reductions/ the CPU Cycles of the proposed method)

 1024 bits 2048 bits 3072 bits 4096 bits
CIOS[20] 139% 171% 194% 210%
KCM [18] 128% 153% 158% 157%

http://csrc.nist.gov/publications/drafts/800-57-part3/Draft_SP800-57-Part3_Recommendationforkeymanagement.pdf
http://csrc.nist.gov/publications/drafts/800-57-part3/Draft_SP800-57-Part3_Recommendationforkeymanagement.pdf
http://csrc.nist.gov/publications/drafts/800-57-part3/Draft_SP800-57-Part3_Recommendationforkeymanagement.pdf
http://www.ftrg.org/xe/?mid=joc_published&category=1680
http://www.ftrg.org/xe/?mid=joc_published&page=1&category=736

[13] H. Eberle, S. Shantz, V. Gupta, N. Gura, L. Rarick,
and L. Spracklen, "Accelerating Next-Generation
Public-Key Cryptosystems on General-Purpose
CPUs," IEEE Macro, vol. 25, issue 2, pp 52-59, 2005.

[14] A. Karatsuba and Y. Ofman, "Multiplication of
multidigit numbers on automata," Soviet Phys.
Doklagy, vol.7, no.7, pp595-596, 1963.

[15] C. Lederer, R. Mader, M. Koschuch, J. Grobschadl,
A. Szekely, and S. Tillich, "Energy-efficient
implementation of ECDH key exchange for wireless
sensor networks," WISTP 2009, LNCS 5746, pp.
112-127, 2009.

[16] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

[17] D. E. Knuth, The Art of Computer Programming,
Addison-Wesley, 1969, 2nd edition, 3rd edition, 1998.

[18] J. Groβschädl, R. M. Avanzi, E. Savas, and S. Tillich:
"Energy-efficient software implementation of large
integer modular arithmetic," CHES 2005, LNCS 3659,
pp.75-90, 2005.

[19] Texas Instruments, "C5000 DSPs: Architecture &
Peripheral Features," Available: http://www.ti.com.

[20] C. K. Koc, T. Acar, and B. S. Kaliski: "Analyzing
and computing Montgomery algorithms," IEEE
Macro, 16(3):26-33, 1996.

http://www.ti.com/

	Abstract
	References

