Crystal Structure Investigation of a Dinuclear N-Heterocyclic Carbenes Dinitrosyl Iron Compound (iMes)Fe(NO)₂(μ -BF₄)(iMes)Fe(NO)₂ and its Reactions and Characterization with an External Ligand (L = iMe)

Ching-Wen Lin'

Student at Tamkang University, Department of Chemistry. *linchingwen1215@gmail.com

By examining the single crystal structure of the complex (iMes)Fe (NO)₂ (μ -BF₄) (iMes) Fe (NO)₂ (iMes= 1,3-bis (2,4,6-trimethylphenyl) imidazolium chloride), it can be observed that this crystal is an asymmetric structure bridged by BF₄ and connected by a dinitrosyl iron complex, exhibiting the electronically localized {Fe(NO)₂}⁹-{Fe(NO)₂}¹⁰ electronic state (Figure 1).

We investigated the reactions between (iMes) Fe $(NO)_2(\mu$ -BF₄) (iMes) Fe $(NO)_2$ and a external ligand iMe. (iMe = 1,3 – dimethyl -2,3-dihydro -1H -imidazole). The structures of the reaction products were determined and identified through IR spectroscopy. The results indicate that to iMe can undergo ligand replacement reactions with (iMes) Fe $(NO)_2$, leading to compounds with different coordination environments.

Upon addition of the ligand iMe, the $\{Fe(NO)_2\}^9$ - $\{Fe(NO)_2\}^{10}$ structure opens up and forms two compounds: $[(iMes)iMeFe(NO)_2]^+BF_4\{Fe(NO)_2\}^9$ and $[(iMes)(iMe)Fe(NO)_2]\{Fe(NO)_2(iMe)\}^{10}$ (Figure 2). IR spectroscopy was used to confirm the generation of these two compounds and analyze the corresponding positions of the peaks.

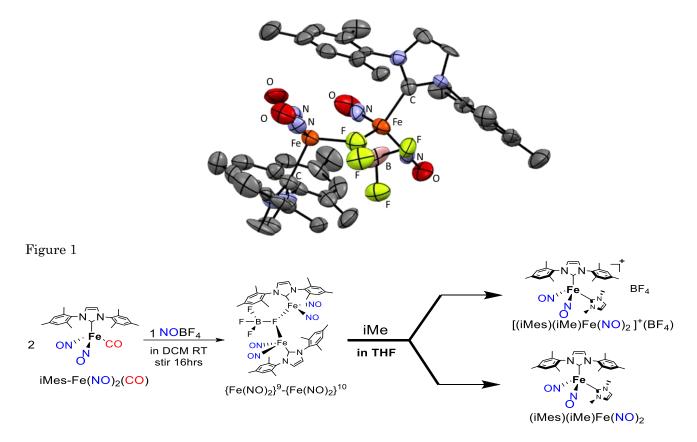


Figure 2

References

1. A {Fe(NO)₃}¹⁰ Trinitrosyliron Complex Stabilized by an N-Heterocyclic Carbene and the Cationic and Neutral {Fe(NO)₂}^{9/10} Products of Its NO Release Chung-Hung Hsieh, Marcetta Y. Darensbourg, *J. Am. Chem. Soc.*, **2010**,132, 14118–14125