1	Recovery of Cu(II) by chemical reduction using sodium dithionite
2 3	Jui-Hsuan Yu ^a , Yi-Hsuan Chou ^a , Yang-Min Liang ^a , Pin-Jan Wang ^a , Chi-Wang Li ^{a*} , and Shiao-Shing Chen ^b
4	
5	^a Department of Water Resources and Environmental Engineering, Tamkang
6	University, 151 Yingzhuan Road, Tamsui district, New Taipei City 25137, Taiwan
7 8	^b Institute of Environmental Engineering and Management, National Taipei University of Technology, No. 1, Sec. 3, Chung-Hsiao E. Road, Taipei 106, Taiwan
9	*Corresponding author: Email: chiwang@mail.tku.edu.tw, (O) +886-2-26239343
10	(FAX) +886-2-26209651
11	Abstract
12	Wastewaters containing Cu(II) along with ligands are ubiquitous in various
13	industrial sectors. Efficacy of treatment processes for copper removal, especially
14	precipitation, is greatly debilitated by ligands. Chemical reduction being commonly
15	employed for production of metal nanoparticles has also been used for removal of
16	copper. Addition of ammonia, an inorganic ligand for metals, was reported to be
17	essential for improving copper reduction efficiency by increasing copper solubility at
18	alkaline pH values. In this study, chemical reduction with sodium dithionite as
19	reductant was employed to treat synthetic ligand-containing wastewater, exploiting
20	the fact that ligands and metals are coexisted in many wastewaters. Experimental
21	result shows that copper ions could be removed by either reduction or simply
22	precipitation mechanism. Removal efficiency and mechanism depend on pH value,
23	type of ligands, and mixing condition. Removal efficiency of more than 99% by
24	reduction mechanism could be achieved under optimal condition. The lowest copper 1

25	removal efficiency observed at pH 9.0 for ammonia system is due to the formation of
26	nano-sized particles, which are readily to pass through 0.45 μ m filter used for sample
27	pretreatment before residual copper analysis. Instead of producing metallic copper,
28	cuprous and copper oxide are identified in the samples collected from ammonia
29	system and EDTA system, respectively. Re-oxidation of metallic copper particles by
30	atmospheric oxygen during sample handling or incomplete reduction of Cu(II) ions
31	during reduction process might be the cause.
32	Keywords: reduction; ligands; dithionite; metallic copper
33	1. Introduction
34	Copper-containing wastewaters are generated in various industry sectors, such as
35	semiconductor, printed circuit board, surface finishing, and electroplating. Other than
36	heavy metals, these wastewaters come with various organic or inorganic chelating
37	agents such as EDTA (ethylenediaminetetraacetic acid), NTA (nitrilotriacetic acid),
38	cyanide, and ammonia, which make removal of heavy metals from these wastewaters
39	much more challenging (Jiang et al. 2008, Jiang et al. 2010, Khelifa et al. 2013). It has
40	been shown that metal removal efficiency by adsorption, coagulation or
41	electrocoagulation is greatly impaired by presence of EDTA (Izquierdo et al. 2013,
42	Khelifa et al. 2013). Destruction of metal/chelate complexes is the key to obtain
43	efficient metal removal (Jiang et al. 2008).

44	Electrochemical reduction of metals was proved to be an effective method for
45	treating ligand/metal-containing wastewater (Huang et al. 2000, Voglar and Lestan
46	2012). While metal is reduced and removed by cathode-deposition in electrochemical
47	process, ligands are degraded simultaneously in anode, making reuse of these ligands
48	impossible. To prevent anodic oxidation of chelating agents, separation of anodic and
49	cathodic chambers with a cationic membrane was proposed (Juang and Lin 2000).
50	However, current efficiency is quite low (~30%) after membrane installed, and very
51	low operation pH of 2.2 has to be maintained for efficient copper recovery.
52	Meanwhile, anolyte has to contain enough concentration of sodium salts to prevent
53	pH rising in the cathodic chamber and to reduce EDTA or NTA precipitation on to the
54	membrane surface (Juang and Lin 2000).
55	Chemical reduction has been employed for production of metal nanoparticles
56	(Chang et al. 2013, Chen et al. 2006, Hashemipour et al. 2011, Park et al. 2007, Tan
57	and Cheong 2013, Umer et al. 2012), removal of heavy metals (Chen and Lim 2002,
58	Geoffroy and Demopoulos 2009, Gomez-Lahoz et al. 1992a, b, Wu et al. 2011a, Wu
59	et al. 2011b), and degradation of dyes (Gemeay 2002, Srividya et al. 1994). Wu et al.
60	(Wu et al. 2011a, Wu et al. 2011b) investigated recovery of copper ions as metallic
61	copper by chemical reduction using dithionite followed by separation of copper
62	particles with a high gradient magnetic separation system. Without elaborating the

reason why reduction reaction has to be conducted at alkaline condition, the authors
stated that addition of ammonia to increase copper solubility at alkaline pH values
was essential for improving copper reduction efficiency (Wu et al. 2011a). In their
studies, pH values of high than 9.2 were maintained for the dominance of ammonia
over ammonium, and the mechanism of copper reduction by dithionite in the presence
of ammonia ligand was presented as follows:

$$69 \qquad Cu_{(aq)}^{2+} + 4NH_3 \leftrightarrow \left[Cu(NH_3)_4\right]_{(aq)}^{2+} \tag{1}$$

70
$$\left[Cu(NH_3)_4\right]_{(aq)}^{2+} + S_2O_4^{2-} + 2H_2O \to Cu_{(S)} + 2SO_{3(aq)}^{2-} + NH_4^+$$
(2)

71 It is known that dithionite decomposes rapidly via disproportional reaction under 72 the acidic condition (Geoffroy and Demopoulos 2009, Rinker et al. 1960), and this 73 might be the underlying reason that alkaline pH values were investigated in the 74 above-mentioned studies. Based on these information, it is reasonable to assume that 75 any ligands that could form complexes with copper, resulting in high solubility of 76 copper at alkaline pH values, will act the same role as did ammonia in the studies by 77 Wu et al. (Wu et al. 2011a, Wu et al. 2011b). Therefore, in this study we take the advantage of ligands, such as EDTA, that are ubiquitous in metal-containing 78 79 wastewater and use sodium dithionite as reductant to reduce and recover copper. Other than alkaline pH values, researchers have shown reductive precipitation of 80 81 elemental selenium from selenious acidic solutions using sodium dithionite, reporting

82	that the reduction reaction only occurs in acidic region (Geoffroy and Demopoulos
83	2009). Meanwhile, optimum pH of 2.5 has been reported for reduction of Cr(VI) to
84	Cr(III) by bisulfite (Barrera-Díaz et al. 2012). Therefore, reduction of copper under
85	acidic pH region will also be investigated in this study.
86	It was shown that oxidation of dithionite is first order with respect to molecular
87	oxygen and is one-half order with respect to the concentration of dithionite (Rinker et
88	al. 1960). Therefore, dissolved oxygen concentration will be a crucial factor affecting
89	copper reduction efficiency. In this study, three mixing conditions, namely mechanical
90	mixing by magnetic stir bar (oxygen-limited condition), mixing with air (oxygen-rich
91	condition), and mixing with nitrogen gas (oxygen-depleted condition), are also
92	conducted to explore the effect of oxygen on copper reduction.
93	2. Experimental section
94	2.1 Chemical and Materials
95	All chemicals are of reagent grade. Due to instability of dithionite in solution,
96	dithionite solution of 20.25 mM was prepared fresh before each experiment by
97	dissolving sodium dithionite (Na ₂ S ₂ O ₄ , Alfa Aesar) in deionized water (DI). Copper
98	solution (6.75 mM) was prepared by dissolving copper sulfate pentahydrate (YAKURI)
99	in DI. EDTA (6.75 mM) and ammonia (54 mM) solutions were prepared, respectively,
100	using ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA-Na2) and
101	ammonium hydroxide (NH ₄ OH) from J.T. Baker. NaOH and HNO ₃ (both 1 N) were 5

102 used for pH adjustment. Hydrogen peroxide solution (30%, SIGMA) was used for

- 103 termination of reduction reaction.
- 104 2.2 Experimental methods
- 105 Solutions of copper and ligand (EDTA or ammonia) of equal volume (50 mL) were
- 106 mixed first with magnetic stirrer or by aerating with air or N_2 gas. During mixing, pH
- 107 of mixture was adjusted to the desired value using NaOH or HNO₃. Chemical
- 108 reduction reaction was then started with addition of dithionite solution (50 mL). The
- 109 resulting mixture has initial copper concentration of 2.25 mM, and
- 110 Cu:ligand:dithionite molar ratio of 1:1:3 and 1:8:3, respectively, for EDTA and
- 111 ammonia systems. After 30 min, reaction was terminated by adding a drop of H_2O_2 .
- 112 Samples were filtered with 0.45 µm membrane filter and acidified with a drop of
- 113 concentrated nitric acid before analysis for residual copper.
- 114 2.3 Analytical methods
- 115 A flame atomic absorption (AA) spectrophotometer (GBC 932 plus, Australia)
- 116 was used for analysis of copper concentration. X-ray diffraction (XRD) analysis
- 117 (Bruker AXSD8 ADVANCEX-ray diffraction system) was employed to identify the
- 118 crystal phase of particles by comparing the diffraction pattern with the database of the
- 119 Joint Committee of Powder Diffraction Standards (JCPDS). A field emission electron
- 120 microscope (JEM-2100F, JEOL) operated at 200 kV was used to obtain transmission
- 121 electron microscope (TEM) images. Sample for TEM analysis was prepared by

122	placing a drop of filtrate through 0.45 μ m membrane filter on a silicon wafer covered
123	by carbon-coated copper grid, followed by drying under vacuum at ambient
124	temperature. A UV-vis spectrophotometer (ThermoSpectronic, Helios Beta) was used
125	to scan the surface plasmon resonance of nanoparticles (Soomro et al. 2014).
126	3. Results and Discussion
127	3.1 Effect of pH on reduction of Cu(II)
128	Figure 1 shows copper removal efficiency as function of pH ranging from 3 to 11
129	with Cu:ligand:Na ₂ S ₂ O ₄ molar ratio of 1:1:3 and 1:8:3, respectively, for EDTA and
130	ammonia solutions. Solution was mixed for 30 min with magnetic stir bar. For
131	solution containing EDTA ligand, copper reduction/removal efficiency of 96.6 to
132	99.6% could be achieved with pH values ranging from 5 to 11, and it is 85% at pH of
133	3.0. The lowest removal efficiency observed at pH of 3.0 does comply with rapid
134	disproportional reaction of dithionite in the acidic condition (Rinker et al. 1960). The
135	lowest removal efficiency could be also related to the speciation of copper in different
136	pH values. Geoffroy and Demopoulos (2009) reported that reduction of selenious acid
137	to selenium using sodium dithionite only occurred in acids region, envisioning that
138	hydrogen selenite ions, which is dominated species at $pH > 2.5$, might be nonreactive
139	toward dithionite. In the current study, the lowest copper removal efficiency observed
140	at pH 3.0 could also be explained by the domination of CuHEDTA ⁻¹ over CuEDTA ⁻²
141	species (dominated species in the pH region of 4 to 11) at pH of 3.0 (see Figure S1) 7

142	with the former not being as reactive as the latter toward dithionite.
143	
144	[Insert Figure 1 here]
145	
146	The rapid disproportional reaction of dithionite in the acidic condition, however,
147	could not explain pH effect on copper reduction efficiency for ammonia system. As
148	indicated in Figure 1, almost 100% removal efficiency could be achieved at all pH
149	values tested except pH 9.0. The effectiveness of copper reduction at acidic pH region
150	is contradicted to those reported by Wu et al. (2011a) who believed that copper
151	reduction was more effective at the alkaline pH region and addition of ammonia was
152	essential for improving reduction efficiency by increasing copper solubility at alkaline
153	pH. In Wu et al. (2011a) study, around 99% of copper removal efficiency was
154	achieved with Cu:ammonia: $Na_2S_2O_4$ molar ratio of 1:4:3 and pH of 9.5. To test if
155	Cu:ammonia ratio might cause this discrepancy on pH effect observed in this study
156	and study by Wu et al. (2011a), reduction experiment with solution having
157	Cu:ammonia:Na $_2$ S $_2$ O $_4$ molar ratio of 1:4:3 was conducted at pH of 9.0, achieving
158	~95% of copper removal efficiency (data not shown). However, appearance of
159	solution at the end of reaction (see Figure S2) is quite different from that with
160	Cu:ammonia:Na $_2S_2O_4$ molar ratio of 1:8:3 (See Figure 2). The solution with

142 with the former not being as reactive as the latter toward dithionite.

161	Cu:ammonia:Na ₂ S ₂ O ₄ molar ratio of 1:4:3 is green in color and murky, showing
162	possible precipitation of copper hydroxide. As indicated in Figure S3, at pH of 9.0
163	about 40% of copper is in the form of $Cu(OH)_2$, which has already precipitated before
164	addition of dithionite. As the result, effective copper removal observed in pH of 9.0
165	with Cu:ammonia: $Na_2S_2O_4$ molar ratio of 1:4:3 is due to precipitation of copper
166	hydroxide instead of reduction reaction.
167	
168	[Insert Figure 2 here]
169	
170	On the other hand, copper/ammonia complexes are the dominant copper species
171	at pH values ranging 7 to 10 with Cu:ammonia ratio of 1:8 (see Figure S4), and
172	precipitation of $Cu(OH)_2$ is no longer possible except at the pH value of 11.0. As
173	indicated in Figure 2, with pH values of 3 to 7, very big aggregated particles were
174	produced and easily settled to the bottom of beakers. The samples for residual copper
175	analysis, i.e., filtrate of 0.45 μm filter, are clear. However, the solution at pH 9.0 is red
176	in color with very fine particles presented, and the filtrate of this has tea color. The
177	color of solution at pH of 11.0 is also different, showing greenish in color with fluffy
178	flocs. As indicated in Figure S4, formation of $Cu(OH)_2$ is possible at this pH, and the
179	completed copper removal (as indicated in the clear filtrate) is due to both

180 precipitation and reduction mechanisms.

181	The low removal efficiency at pH of 9.0 might be related to the size of reduced
182	particles. In production of metallic nanoparticles, several authors (Chang et al. 2013,
183	Sierra-Á vila et al. 2014, Song et al. 2009, Tan and Cheong 2013) have stated the
184	important of pH adjustment and capping agent or stabilizers addition in control of the
185	size of particles produced. For example, Chang et al. (2013) showed that adding
186	ammonium salt of poly(acrylic acid) (PAA-NH4) during reduction formation of
187	metallic copper particles could reduce particle size from 150-200 nm without addition
188	of PAA-NH4 to less than 50 nm with addition of PAA-NH4. Wu and Chen (2004)
189	reported the importance of ammonia addition for producing finer copper nanoparticles
190	where ammonia ions not only can adjust solution pH and but also act as complex
191	agent. To elucidate the possible cause of low removal efficiency at pH of 9.0, TEM
192	analysis of the filtered sample were conducted. As indicated in Figure 3 (A), in the
193	filtrate particles are in the nano-size region with size of around 5-10 nm (see inset
194	figure). A UV-Vis spectrum of the filtrate (shown in Figure S5) does not show
195	distinguishable surface plasmon resonance peaks at 560-590 nm region (Soomro et al.
196	2014), showing a shoulder at wavelength of greater than 560. It might be due to the
197	very small nanoparticles present (Brumbaugh et al. 2014). Clear lattice spacings of
198	copper could be seen by zooming in the particles as indicated in Figure 3 (B). On the

199	other hand, some aggregated particles with size of around 300-500 nm could be seen
200	in the unfiltered sample (see Figure 3(C)).
201	
202	[Insert Figure 3 here]
203	
204	3. 2 Effect of mixing condition on copper reduction efficiency
205	It was shown that oxidation of dithionite is first order with respect to molecular
206	oxygen and is one-half order with respect to the concentration of dithionite (Rinker et
207	al. 1960). Meanwhile, Cu nanopowders are chemically unstable and are readily
208	re-oxidized by dissolved oxygen (DO) (Chang et al. 2013, Tan and Cheong 2013).
209	Thus, dissolved oxygen concentration will be a crucial factor affecting copper
210	reduction efficiency. In this section, effect of mixing condition on copper reduction
211	efficiency was conducted. Other than magnetic stirring, mixing with nitrogen gas or
212	air purging were also studied. Both copper removal efficiency and photos of solution
213	taken at the end of reaction are shown in Figure 4. The removal efficiency are in the
214	order of N ₂ purging>Mixing>air purging for both EDTA and ammonia systems. With
215	N ₂ purging, re-oxidation of chemically unstable Cu nanopowders is minimized
216	(Chang et al. 2013, Tan and Cheong 2013), and reduction efficiency is the highest. On
217	the contrary, solution with air purging shows typical copper(II) blue color, indicating

219	
220	[Insert Figure 4 here]
221	
222	3.3 Solid analysis
223	Particle samples collected from experiments with N_2 purging at pH of 9.0 were
224	subjected to XRD analysis to identify the crystal phase of particles. As indicated in
225	Figure 5, cuprous oxide is the only crystal phase identified for sample collected from
226	ammonia system, and cupric oxide is identified in the sample collected from EDTA
227	system. The same finding was reported by Wu et al. (2011a), and these authors
228	indicated that oxidation of metallic copper particles by atmospheric oxygen at the
229	surface is the main reason that only cuprous and cupric oxides are identified. Other
230	than re-oxidation of metallic copper nanoparticles by atmospheric oxygen during
231	sample handling, incomplete reduction of copper(II) ions during reduction process
232	might also result in the formation of cupric or cuprous oxides (Chang et al. 2013).
233	Based on the observation of color of particles in the solution (see Figure 4), i.e., black
234	color (characteristic color of cupric oxide) in EDTA system, incomplete reduction of
235	copper(II) ions during reduction reaction might be the main reason that metallic
236	copper is not found in this study.

that dithionite is oxidized and/or Cu nanopowders is re-oxidized by DO.

237	
238	[Insert Figure 5 here]
239	
240	4. Conclusions
241	In this study, chemical reduction with sodium dithionite was employed to recover
242	copper from solution containing ligands. Result shows that copper ions could be
243	removed by either reduction or simply precipitation mechanisms. Efficiency and
244	mechanism of copper removal depend on pH, type of ligands, and mixing condition.
245	Under optimal condition, removal efficiency of more than 99% could be achieved.
246	For solution containing EDTA ligand, 96.6 to 99.6% of copper reduction/removal
247	efficiency could be achieved with pH values ranging from 5 to 11, and it is only 85%
248	at pH of 3.0. The lowest removal efficiency observed at pH of 3.0 does comply with
249	rapid disproportional reaction of dithionite in the acidic condition.
250	Almost 100% removal efficiency could be achieved in ammonia system at all pH
251	values tested except pH 9.0. The low removal efficiency at pH 9.0 might be related to
252	the size of particles produced in which nano-sized particles are readily to pass through
253	$0.45 \ \mu m$ filter used for sample pretreatment before residual copper concentration
254	analysis.

255 Instead of producing metallic copper, cuprous and copper oxide are identified for

256	samples collected from ammonia system and EDTA system, respectively.
257	Re-oxidation of metallic copper particles by atmospheric oxygen during sample
258	handling or incomplete reduction of Cu(II) ions during reduction process might be the
259	cause.
260	Acknowledgement
261	The study has been supported by the Ministry of Science and Technology of
262	Taiwan under Grant Numbers 103-2221-E-032 -001
263	Reference
264	Barrera-Díaz, C.E., Lugo-Lugo, V. and Bilyeu, B. (2012) A review of chemical,
265	electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard.
266	Mater. 223–224, 1-12.
267	Brumbaugh, A.D., Cohen, K.A. and St. Angelo, S.K. (2014) Ultrasmall Copper
268	Nanoparticles Synthesized with a Plant Tea Reducing Agent. ACS Sustainable
269	Chemistry & Engineering 2(8), 1933-1939.
270	Chang, S.J., Tung, C.A., Chen, B.W., Chou, Y.C. and Li, C.C. (2013) Synthesis
271	of non-oxidative copper nanoparticles. RSC Advances 3(46), 24005-24008.
272	Chen, J.P. and Lim, L.L. (2002) Key factors in chemical reduction by hydrazine
273	for recovery of precious metals. Chemosphere 49(4), 363-370.
274	Chen, L., Zhang, D., Chen, J., Zhou, H. and Wan, H. (2006) The use of CTAB to
275	control the size of copper nanoparticles and the concentration of alkylthiols on their
276	surfaces. Mater. Sci. Eng., A 415(1-2), 156-161.
277	Gemeay, A.H. (2002) Kinetics and mechanism of the reduction of some azo-dyes
278	by inorganic oxysulfur compounds. Dyes Pigments 54(3), 201-212.
279	Geoffroy, N. and Demopoulos, G.P. (2009) Reductive precipitation of elemental
280	selenium from selenious acidic solutions using sodium dithionite. Ind. Eng. Chem.
281	Res. 48(23), 10240-10246.
282	Gomez-Lahoz, C., Garcia-Herruzo, F., Rodriguez-Maroto, J.M. and Rodriguez,
283	J.J. (1992a) Copper removal from water by chemical reduction with sodium
284	borohydride. Separ. Sci. Technol. 27(11), 1449-1468.
285	Gomez-Lahoz, C., Garcia-Herruzo, F., Rodriguez-Maroto, J.M. and Rodriguez,
286	J.J. (1992b) Heavy metal removal by chemical reduction with sodium borohydride. A

287	pilot-plant study. Separ. Sci. Technol. 27(12), 1569-1582.
288	Hashemipour, H., Zadeh, M.E., Pourakbari, R. and Rahimi, P. (2011)
289	Investigation on synthesis and size control of copper nanoparticle via chemical
290	reduction method. International Journal of Physical Sciences 6(18), 4331-4336.
291	Huang, C.P., Hsu, M.C. and Miller, P. (2000) Recovery of EDTA from power
292	plant boiler chemical cleaning wastewater. J. Environ. Eng. 126(10), 919-924.
293	Izquierdo, M., Gabaldón, C. and Marzal, P. (2013) Interference of EDTA in the
294	treatment of metal plating wastewater by biosorption. J. Chem. Technol. Biot. 88(4),
295	606-614.
296	Jiang, S., Fu, F., Qu, J. and Xiong, Y. (2008) A simple method for removing
297	chelated copper from wastewaters: Ca(OH)2-based replacement-precipitation.
298	Chemosphere 73(5), 785-790.
299	Jiang, S., Qu, J. and Xiong, Y. (2010) Removal of chelated copper from
300	wastewaters by Fe2+-based replacement-precipitation. Environ. Chem. Lett. 8(4),
301	339-342.
302	Juang, RS. and Lin, LC. (2000) Treatment of complexed Copper(II) solutions
303	with electrochemical membrane processes. Water Res. 34(1), 43-50.
304	Khelifa, A., Aoudj, S., Moulay, S. and De Petris-Wery, M. (2013) A one-step
305	electrochlorination/electroflotation process for the treatment of heavy metals
306	wastewater in presence of EDTA. Chem. Eng. Process. 70, 110-116.
307	Park, B.K., Jeong, S., Kim, D., Moon, J., Lim, S. and Kim, J.S. (2007) Synthesis
308	and size control of monodisperse copper nanoparticles by polyol method. J. Colloid
309	Interf. Sci. 311(2), 417-424.
310	Rinker, R.G., Gordon, T.P., Mason, D.M., Sakaida, R.R. and Corcoran, W.H.
311	(1960) Kinetics and mechanism of the air oxidation of the dithionite ion $(S_2O_4^{=})$ in
312	aqueous solution. The Journal of Physical Chemistry 64(5), 573-581.
313	Sierra-Á vila, R., Pérez-Alvarez, M., Cadenas-Pliego, G., Á vila-Orta, C.A.,
314	Betancourt-Galindo, R., Jiménez-Regalado, E., Jiménez-Barrera, R.M. and
315	Martínez-Colunga, J.G. (2014) Synthesis of copper nanoparticles coated with nitrogen
316	ligands. Journal of Nanomaterials 2014.
317	Song, K.C., Lee, S.M., Park, T.S. and Lee, B.S. (2009) Preparation of colloidal
318	silver nanoparticles by chemical reduction method. Korean J. Chem. Eng. 26(1),
319	153-155.
320	Soomro, R.A., Hussain Sherazi, S.T., Sirajuddin, Memon, N., Shah, M.R.,
321	Kalwar, N.H., Hallam, K.R. and Shah, A. (2014) Synthesis of air stable copper
322	nanoparticles and their use in catalysis. Advanced Materials Letters 5(4), 191-198.
323	Srividya, N., Paramasivan, G., Seetharaman, K. and Ramamurthy, P. (1994)
324	Two-step reduction of Indigo Carmine by dithionite: A stopped-flow study. J. Chem.

325 Soc., Faraday Trans. 90(17), 2525-2530.

- Tan, K.S. and Cheong, K.Y. (2013) Advances of Ag, Cu, and Ag-Cu alloy
 nanoparticles synthesized via chemical reduction route. J. Nanopart. Res. 15(4).
 Umer, A., Naveed, S., Ramzan, N. and Rafique, M.S. (2012) Selection of a
- 329 suitable method for the synthesis of copper nanoparticles. Nano 7(5).
- Voglar, D. and Lestan, D. (2012) Electrochemical treatment of spent solution
 after EDTA-based soil washing. Water Res. 46(6), 1999-2008.
- 332 Wu, S.H. and Chen, D.H. (2004) Synthesis of high-concentration Cu
- nanoparticles in aqueous CTAB solutions. J. Colloid Interf. Sci. 273(1), 165-169.
- 334 Wu, W.-I., Panchangam, S.C., Wu, C.-H., Hong, A.P.K. and Lin, C.-F. (2011a)
- Recovery of metallic copper by integrated chemical reduction and high gradient
 magnetic separation. Environ. Technol. 32(8), 817 824.
- 337 Wu, W.-I., Wu, C.-H., Hong, P.K.A. and Lin, C.-F. (2011b) Capture of metallic
- 338 copper by high gradient magnetic separation system. Environ. Technol. 32(13),
- 339 1427-1433.

List of Figure caption

Figure 1. Effect of pH on reduction/removal of copper in the solution with $Cu:Ligand:Na_2S_2O_4$ molar ratio of 1:8:3 and 1:1:3 for ammonia and EDTA systems, respectively. Initial Cu concentration of 2.25 mM with magnetic stirring. Reaction time of 30 min. Error bars represent one standard deviation from the average of triplicate experiments with exception of those for pH 7 to 11 in which five replicate experiments were conducted.

Figure 2. Photos of (A) solution and (B) filtrate with various reaction pH values. Cu:ammonium:Na₂S₂O₄ molar ratio of 1:8:3. Initial Cu concentration of 2.25 mM with magnetic stirring. Reaction time of 30 min.

Figure 3. (A) TEM of particles in the sample filtered through 0.45 µm filter, (B) Close-up view of TEM picture to show lattice spacing of copper, and (C) TEM of particles before filtration. Experimental conditions: Cu:ammonia:Na2S2O4 molar ratio of 1:8:3. Reaction pH of 9.0. Initial Cu concentration of 2.25 mM. Reaction time of 30 min.

Figure 4. Effect of gas purging or mixing with magnetic stirring on copper removal efficiency at pH 9. Experimental conditions: Cu:Ligand:Na₂S₂O₄ molar ratio of 1:8:3 and 1:1:3 for ammonia and EDTA systems, respectively. Initial Cu concentration of 2.25 mM. Reaction time of 30 min. Error bars represent one standard deviation from the average of triplicate experiments.

Figure 5. XRD analysis of dried copper particles collected from experiments with only magnetic stirring at pH 9.0 (a) Particles from ammonia system. (b) Particles from EDTA system.